These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30395160)
1. DrugThatGene: integrative analysis to streamline the identification of druggable genes, pathways and protein complexes from CRISPR screens. Canver MC; Bauer DE; Maeda T; Pinello L Bioinformatics; 2019 Jun; 35(11):1981-1984. PubMed ID: 30395160 [TBL] [Abstract][Full Text] [Related]
2. Guide assignment in single-cell CRISPR screens using crispat. Braunger JM; Velten B Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39240651 [TBL] [Abstract][Full Text] [Related]
3. CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing. Cancellieri S; Canver MC; Bombieri N; Giugno R; Pinello L Bioinformatics; 2020 Apr; 36(7):2001-2008. PubMed ID: 31764961 [TBL] [Abstract][Full Text] [Related]
4. Nuclease-Deficient Clustered Regularly Interspaced Short Palindromic Repeat-Based Approaches for Lek A; Ma K; Woodman KG; Lek M Hum Gene Ther; 2021 Mar; 32(5-6):260-274. PubMed ID: 33446040 [TBL] [Abstract][Full Text] [Related]
5. PICKLES v3: the updated database of pooled in vitro CRISPR knockout library essentiality screens. Novak LC; Chou J; Colic M; Bristow CA; Hart T Nucleic Acids Res; 2023 Jan; 51(D1):D1117-D1121. PubMed ID: 36350677 [TBL] [Abstract][Full Text] [Related]
6. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. Maes A; Botzki A; Mathys J; Impens F; Saelens X J Virol; 2024 May; 98(5):e0185723. PubMed ID: 38567969 [TBL] [Abstract][Full Text] [Related]
7. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567 [TBL] [Abstract][Full Text] [Related]
8. Analyzing CRISPR screens in non-conventional microbes. Trivedi V; Ramesh A; Wheeldon I J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36928506 [TBL] [Abstract][Full Text] [Related]
9. GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. Zamanighomi M; Jain SS; Ito T; Pal D; Daley TP; Sellers WR Genome Biol; 2019 Jul; 20(1):137. PubMed ID: 31300006 [TBL] [Abstract][Full Text] [Related]
10. Identifying chemogenetic interactions from CRISPR screens with drugZ. Colic M; Wang G; Zimmermann M; Mascall K; McLaughlin M; Bertolet L; Lenoir WF; Moffat J; Angers S; Durocher D; Hart T Genome Med; 2019 Aug; 11(1):52. PubMed ID: 31439014 [TBL] [Abstract][Full Text] [Related]
11. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Park J; Bae S; Kim JS Bioinformatics; 2015 Dec; 31(24):4014-6. PubMed ID: 26358729 [TBL] [Abstract][Full Text] [Related]
12. caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens. Winter J; Breinig M; Heigwer F; Brügemann D; Leible S; Pelz O; Zhan T; Boutros M Bioinformatics; 2016 Feb; 32(4):632-4. PubMed ID: 26508755 [TBL] [Abstract][Full Text] [Related]
13. MAUDE: inferring expression changes in sorting-based CRISPR screens. de Boer CG; Ray JP; Hacohen N; Regev A Genome Biol; 2020 Jun; 21(1):134. PubMed ID: 32493396 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Based Lentiviral Knockout Libraries for Functional Genomic Screening and Identification of Phenotype-Related Genes. Thomsen EA; Mikkelsen JG Methods Mol Biol; 2019; 1961():343-357. PubMed ID: 30912056 [TBL] [Abstract][Full Text] [Related]
15. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Pourcel C; Touchon M; Villeriot N; Vernadet JP; Couvin D; Toffano-Nioche C; Vergnaud G Nucleic Acids Res; 2020 Jan; 48(D1):D535-D544. PubMed ID: 31624845 [TBL] [Abstract][Full Text] [Related]
16. The impact of CRISPR-Cas9 on target identification and validation. Moore JD Drug Discov Today; 2015 Apr; 20(4):450-7. PubMed ID: 25572406 [TBL] [Abstract][Full Text] [Related]
17. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Yim S; Hwang W; Han N; Lee D Front Immunol; 2022; 13():884561. PubMed ID: 35651625 [TBL] [Abstract][Full Text] [Related]
18. Gene editing and its applications in biomedicine. Li G; Li X; Zhuang S; Wang L; Zhu Y; Chen Y; Sun W; Wu Z; Zhou Z; Chen J; Huang X; Wang J; Li D; Li W; Wang H; Wei W Sci China Life Sci; 2022 Apr; 65(4):660-700. PubMed ID: 35235150 [TBL] [Abstract][Full Text] [Related]
19. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research]. Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746 [TBL] [Abstract][Full Text] [Related]
20. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity. Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]