These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 30395277)

  • 1. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.
    Chow CN; Zheng HQ; Wu NY; Chien CH; Huang HD; Lee TY; Chiang-Hsieh YF; Hou PF; Yang TY; Chang WC
    Nucleic Acids Res; 2016 Jan; 44(D1):D1154-60. PubMed ID: 26476450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PlantPAN 4.0: updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters.
    Chow CN; Yang CW; Wu NY; Wang HT; Tseng KC; Chiu YH; Lee TY; Chang WC
    Nucleic Acids Res; 2024 Jan; 52(D1):D1569-D1578. PubMed ID: 37897338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups.
    Chang WC; Lee TY; Huang HD; Huang HY; Pan RL
    BMC Genomics; 2008 Nov; 9():561. PubMed ID: 19036138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PlantRegMap: charting functional regulatory maps in plants.
    Tian F; Yang DC; Meng YQ; Jin J; Gao G
    Nucleic Acids Res; 2020 Jan; 48(D1):D1104-D1113. PubMed ID: 31701126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
    Jin J; Tian F; Yang DC; Meng YQ; Kong L; Luo J; Gao G
    Nucleic Acids Res; 2017 Jan; 45(D1):D1040-D1045. PubMed ID: 27924042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.
    Chen D; Kaufmann K
    Methods Mol Biol; 2017; 1629():239-269. PubMed ID: 28623590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana.
    Chen YA; Wen YC; Chang WC
    BMC Genomics; 2012 Mar; 13():85. PubMed ID: 22397531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Database for Plant Transcription Factor Binding Sites.
    Chang WC; Chow CN
    Methods Mol Biol; 2023; 2594():173-183. PubMed ID: 36264496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors.
    Tu X; Mejía-Guerra MK; Valdes Franco JA; Tzeng D; Chu PY; Shen W; Wei Y; Dai X; Li P; Buckler ES; Zhong S
    Nat Commun; 2020 Oct; 11(1):5089. PubMed ID: 33037196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of plant transcription factor target sequences.
    Franco-Zorrilla JM; Solano R
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):21-30. PubMed ID: 27155066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UniBind: maps of high-confidence direct TF-DNA interactions across nine species.
    Puig RR; Boddie P; Khan A; Castro-Mondragon JA; Mathelier A
    BMC Genomics; 2021 Jun; 22(1):482. PubMed ID: 34174819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring condition-specific targets of human TF-TF complexes using ChIP-seq data.
    Yang CC; Chen MH; Lin SY; Andrews EH; Cheng C; Liu CC; Chen JJ
    BMC Genomics; 2017 Jan; 18(1):61. PubMed ID: 28068916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EXPath 2.0: An Updated Database for Integrating High-Throughput Gene Expression Data with Biological Pathways.
    Tseng KC; Li GZ; Hung YC; Chow CN; Wu NY; Chien YY; Zheng HQ; Lee TY; Kuo PL; Chang SB; Chang WC
    Plant Cell Physiol; 2020 Oct; 61(10):1818-1827. PubMed ID: 32898258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.