These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
858 related articles for article (PubMed ID: 30395288)
1. RHOA activity in expanding blastocysts is essential to regulate HIPPO-YAP signaling and to maintain the trophectoderm-specific gene expression program in a ROCK/actin filament-independent manner. Marikawa Y; Alarcon VB Mol Hum Reprod; 2019 Feb; 25(2):43-60. PubMed ID: 30395288 [TBL] [Abstract][Full Text] [Related]
3. Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1. Regin M; Essahib W; Demtschenko A; Dewandre D; David L; Gerri C; Niakan KK; Verheyen G; Tournaye H; Sterckx J; Sermon K; Van De Velde H Hum Reprod; 2023 Aug; 38(8):1484-1498. PubMed ID: 37295962 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Kono K; Tamashiro DA; Alarcon VB Dev Biol; 2014 Oct; 394(1):142-55. PubMed ID: 24997360 [TBL] [Abstract][Full Text] [Related]
5. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo. Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449 [TBL] [Abstract][Full Text] [Related]
6. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. Alarcon VB; Marikawa Y Adv Anat Embryol Cell Biol; 2018; 229():47-68. PubMed ID: 29177764 [TBL] [Abstract][Full Text] [Related]
7. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Hirate Y; Hirahara S; Inoue K; Kiyonari H; Niwa H; Sasaki H Dev Growth Differ; 2015 Oct; 57(8):544-56. PubMed ID: 26450797 [TBL] [Abstract][Full Text] [Related]
8. Trophectoderm formation: regulation of morphogenesis and gene expressions by RHO, ROCK, cell polarity, and HIPPO signaling. Alarcon VB; Marikawa Y Reproduction; 2022 Oct; 164(4):R75-R86. PubMed ID: 35900353 [TBL] [Abstract][Full Text] [Related]
9. Yes-associated protein 1 translocation through actin cytoskeleton organization in trophectoderm cells. Yamamura S; Goda N; Akizawa H; Kohri N; Balboula AZ; Kobayashi K; Bai H; Takahashi M; Kawahara M Dev Biol; 2020 Dec; 468(1-2):14-25. PubMed ID: 32946790 [TBL] [Abstract][Full Text] [Related]
10. NSUN5 is essential for proper cell proliferation and differentiation of mouse preimplantation embryos. Liu D; Yamamoto T; Wang H; Minami N; Honda S; Ikeda S Reproduction; 2024 Jul; 168(1):. PubMed ID: 38670153 [TBL] [Abstract][Full Text] [Related]
12. A Comparative Analysis of Hippo Signaling Pathway Components during Murine and Bovine Early Mammalian Embryogenesis. Sharma J; Antenos M; Madan P Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33669396 [TBL] [Abstract][Full Text] [Related]
13. P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture. Edwards NA; Watson AJ; Betts DH Mol Hum Reprod; 2016 Sep; 22(9):634-47. PubMed ID: 27385725 [TBL] [Abstract][Full Text] [Related]
14. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Calder MD; Edwards NA; Betts DH; Watson AJ Mol Hum Reprod; 2017 Nov; 23(11):771-785. PubMed ID: 28962017 [TBL] [Abstract][Full Text] [Related]
15. Trophectoderm cells of human mosaic embryos display increased apoptotic levels and impaired differentiation capacity: a molecular clue regarding their reproductive fate? Martín Á; Mercader A; Beltrán D; Mifsud A; Nohales M; Pardiñas ML; Ortega-Jaén D; de Los Santos MJ Hum Reprod; 2024 Apr; 39(4):709-723. PubMed ID: 38308811 [TBL] [Abstract][Full Text] [Related]
16. The role of RHOA signaling in trophectoderm cell-fate decision in cattle. Kohri N; Akizawa H; Iisaka S; Bai H; Takahashi M; Kawahara M Biochem Biophys Res Commun; 2020 Aug; 528(4):713-718. PubMed ID: 32513530 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive chromosome screening and gene expression analysis from the same biopsy in human preimplantation embryos. Marin D; Wang Y; Tao X; Scott RT; Treff NR Mol Hum Reprod; 2017 May; 23(5):330-338. PubMed ID: 28369516 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360 [TBL] [Abstract][Full Text] [Related]
19. Improvement of implantation potential in mouse blastocysts derived from IVF by combined treatment with prolactin, epidermal growth factor and 4-hydroxyestradiol. Takeuchi M; Seki M; Furukawa E; Takahashi A; Saito K; Kobayashi M; Ezoe K; Fukui E; Yoshizawa M; Matsumoto H Mol Hum Reprod; 2017 Aug; 23(8):557-570. PubMed ID: 28810691 [TBL] [Abstract][Full Text] [Related]
20. Single-cell multi-omics sequencing reveals chromosome copy number inconsistency between trophectoderm and inner cell mass in human reconstituted embryos after spindle transfer. Zhong W; Shen K; Xue X; Wang W; Wang W; Zuo H; Guo Y; Yao S; Sun M; Song C; Wang Q; Ruan Z; Yao X; Shang W Hum Reprod; 2023 Nov; 38(11):2137-2153. PubMed ID: 37766497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]