These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30395380)

  • 1. Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes.
    Hülsewede D; Meyer LE; von Langermann J
    Chemistry; 2019 Apr; 25(19):4871-4884. PubMed ID: 30395380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis.
    Buque-Taboada EM; Straathof AJ; Heijnen JJ; van der Wielen LA
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):1-12. PubMed ID: 16607527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of in situ product removal strategies in biocatalysis applying scaled-down unit operations.
    Heintz S; Börner T; Ringborg RH; Rehn G; Grey C; Nordblad M; Krühne U; Gernaey KV; Adlercreutz P; Woodley JM
    Biotechnol Bioeng; 2017 Mar; 114(3):600-609. PubMed ID: 27668843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.
    Van Hecke W; Kaur G; De Wever H
    Biotechnol Adv; 2014 Nov; 32(7):1245-1255. PubMed ID: 25072605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years.
    Stark D; von Stockar U
    Adv Biochem Eng Biotechnol; 2003; 80():149-75. PubMed ID: 12747544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ product removal in fermentation systems: improved process performance and rational extractant selection.
    Dafoe JT; Daugulis AJ
    Biotechnol Lett; 2014 Mar; 36(3):443-60. PubMed ID: 24141707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems.
    Lin CI; McCarty RM; Liu HW
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3446-3489. PubMed ID: 27505692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient magnesium lactate production with in situ product removal by crystallization.
    Wang Y; Cai D; Chen C; Wang Z; Qin P; Tan T
    Bioresour Technol; 2015 Dec; 198():658-63. PubMed ID: 26433791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of in situ product-removal techniques to biocatalytic processes.
    Lye GJ; Woodley JM
    Trends Biotechnol; 1999 Oct; 17(10):395-402. PubMed ID: 10481171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification.
    Tamborini L; Fernandes P; Paradisi F; Molinari F
    Trends Biotechnol; 2018 Jan; 36(1):73-88. PubMed ID: 29054312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing.
    Fisher AC; Kamga MH; Agarabi C; Brorson K; Lee SL; Yoon S
    Trends Biotechnol; 2019 Mar; 37(3):253-267. PubMed ID: 30241924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biocatalytic repertoire of natural biaryl formation.
    Aldemir H; Richarz R; Gulder TA
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8286-93. PubMed ID: 25045123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic and whole cell catalysis: finding new strategies for old processes.
    de Carvalho CC
    Biotechnol Adv; 2011; 29(1):75-83. PubMed ID: 20837129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity-based in situ product removal coupled with co-immobilization of oily substrate and filamentous fungus.
    Dukler A; Freeman A
    J Mol Recognit; 1998; 11(1-6):231-5. PubMed ID: 10076845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.
    Wohlgemuth R; Plazl I; Žnidaršič-Plazl P; Gernaey KV; Woodley JM
    Trends Biotechnol; 2015 May; 33(5):302-14. PubMed ID: 25836031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Debottlenecking product inhibition in 1,3-propanediol fermentation by In-Situ Product Recovery.
    Kaur G; Srivastava AK; Chand S
    Bioresour Technol; 2015 Dec; 197():451-7. PubMed ID: 26356117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry to describe product and contaminant adsorption properties for bioprocess development.
    Berrill A; Ho SV; Bracewell DG
    Biotechnol Bioeng; 2011 Aug; 108(8):1862-71. PubMed ID: 21351073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ product removal as a tool for bioprocessing.
    Freeman A; Woodley JM; Lilly MD
    Biotechnology (N Y); 1993 Sep; 11(9):1007-12. PubMed ID: 7764000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous downstream processing for high value biological products: A Review.
    Zydney AL
    Biotechnol Bioeng; 2016 Mar; 113(3):465-75. PubMed ID: 26153056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of computational fluid dynamics applications in biotechnology processes.
    Sharma C; Malhotra D; Rathore AS
    Biotechnol Prog; 2011; 27(6):1497-1510. PubMed ID: 22235483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.