These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 30395478)
1. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478 [TBL] [Abstract][Full Text] [Related]
2. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems. Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207 [TBL] [Abstract][Full Text] [Related]
3. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces. Zhu Y; Hou G; Wang Q; Zhu T; Sun T; Xu J; Chen K Nanoscale; 2022 Aug; 14(30):10816-10822. PubMed ID: 35822626 [TBL] [Abstract][Full Text] [Related]
4. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Zhou J; Liu Z; Liu G; Pan P; Liu X; Tang C; Liu Z; Wang J Opt Express; 2020 Nov; 28(24):36476-36486. PubMed ID: 33379740 [TBL] [Abstract][Full Text] [Related]
5. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Rephaeli E; Fan S Opt Express; 2009 Aug; 17(17):15145-59. PubMed ID: 19687992 [TBL] [Abstract][Full Text] [Related]
6. Design and validation of a high-efficiency planar solar thermophotovoltaic system using a spectrally selective emitter. Bhatt R; Gupta M Opt Express; 2020 Jul; 28(15):21869-21890. PubMed ID: 32752460 [TBL] [Abstract][Full Text] [Related]
7. Construction and performance analysis of a solar thermophotovoltaic system targeting on the efficient utilization of AM0 space solar radiation. Chen B; Shan S iScience; 2022 Nov; 25(11):105373. PubMed ID: 36345332 [TBL] [Abstract][Full Text] [Related]
9. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems. Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245 [TBL] [Abstract][Full Text] [Related]
10. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting. Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171 [TBL] [Abstract][Full Text] [Related]
11. Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography. Go M; Lee D; Kim S; Jang J; Kim KW; Lee J; Shim S; Kim JK; Rho J ACS Appl Mater Interfaces; 2023 Jan; 15(2):3266-3273. PubMed ID: 36598796 [TBL] [Abstract][Full Text] [Related]
12. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System. Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846 [TBL] [Abstract][Full Text] [Related]
13. Enhancing solar-thermal energy conversion with silicon-cored tungsten nanowire selective metamaterial absorbers. Chang JY; Taylor S; McBurney R; Ying X; Allu G; Chen YB; Wang L iScience; 2021 Jan; 24(1):101899. PubMed ID: 33364587 [TBL] [Abstract][Full Text] [Related]
14. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten. Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586 [TBL] [Abstract][Full Text] [Related]
15. A nanophotonic solar thermophotovoltaic device. Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985 [TBL] [Abstract][Full Text] [Related]
16. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance. Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420 [TBL] [Abstract][Full Text] [Related]
17. Perfect selective metamaterial solar absorbers. Wang H; Wang L Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927 [TBL] [Abstract][Full Text] [Related]
18. Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures. Niu X; Qi D; Wang X; Cheng Y; Chen F; Li B; Gong R J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1832-1838. PubMed ID: 30461841 [TBL] [Abstract][Full Text] [Related]
19. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion. Thomas NH; Chen Z; Fan S; Minnich AJ Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230 [TBL] [Abstract][Full Text] [Related]
20. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. Chester D; Bermel P; Joannopoulos JD; Soljacic M; Celanovic I Opt Express; 2011 May; 19 Suppl 3():A245-57. PubMed ID: 21643366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]