These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3039558)

  • 21. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome.
    Shoemaker NB; Getty C; Gardner JF; Salyers AA
    J Bacteriol; 1986 Mar; 165(3):929-36. PubMed ID: 3005243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element.
    Shoemaker NB; Wang GR; Stevens AM; Salyers AA
    J Bacteriol; 1993 Oct; 175(20):6578-87. PubMed ID: 8407835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conjugal transfer of the 5-nitroimidazole resistance plasmid pIP417 from Bacteroides vulgatus BV-17: characterization and nucleotide sequence analysis of the mobilization region.
    Trinh S; Haggoud A; Reysset G
    J Bacteriol; 1996 Dec; 178(23):6671-6. PubMed ID: 8955281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two independent conjugal transfer systems operating in Bacteroides fragilis V479-1.
    Smith CJ; Welch RA; Macrina FL
    J Bacteriol; 1982 Jul; 151(1):281-7. PubMed ID: 7085560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conjugal transfer of R plasmids in Neisseria gonorrhoeae.
    Roberts M; Falkow S
    Nature; 1977 Apr; 266(5603):630-1. PubMed ID: 404570
    [No Abstract]   [Full Text] [Related]  

  • 26. Direct repeats flanking the Bacteroides transposon Tn4351 are insertion sequence elements.
    Hwa V; Shoemaker NB; Salyers AA
    J Bacteriol; 1988 Jan; 170(1):449-51. PubMed ID: 2826402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes.
    Guiney DG; Hasegawa P; Davis CE
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7203-6. PubMed ID: 6095273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression.
    Guiney DG; Bouic K; Hasegawa P; Matthews B
    Plasmid; 1988 Jul; 20(1):17-22. PubMed ID: 3071818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic transfer systems in Bacteroides: cloning and mapping of the transferable tetracycline-resistance locus.
    Guiney DG; Hasegawa P; Bouic K; Matthews B
    Mol Microbiol; 1989 Nov; 3(11):1617-23. PubMed ID: 2615657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize.
    Salyers AA; Shoemaker NB; Li LY
    J Bacteriol; 1995 Oct; 177(20):5727-31. PubMed ID: 7592315
    [No Abstract]   [Full Text] [Related]  

  • 31. Detection of conjugal transfer systems in oral, black-pigmented Bacteroides spp.
    Guiney DG; Bouic K
    J Bacteriol; 1990 Jan; 172(1):495-7. PubMed ID: 2294095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conjugal transfer of antibiotic resistance factors in Bacteroides fragilis: the btgA and btgB genes of plasmid pBFTM10 are required for its transfer from Bacteroides fragilis and for its mobilization by IncP beta plasmid R751 in Escherichia coli.
    Hecht DW; Jagielo TJ; Malamy MH
    J Bacteriol; 1991 Dec; 173(23):7471-80. PubMed ID: 1657890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element.
    Stevens AM; Shoemaker NB; Salyers AA
    J Bacteriol; 1990 Aug; 172(8):4271-9. PubMed ID: 2165473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853.
    Nikolich MP; Shoemaker NB; Wang GR; Salyers AA
    J Bacteriol; 1994 Nov; 176(21):6606-12. PubMed ID: 7961412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in the genetics of the clostridia.
    Young M; Minton NP; Staudenbauer WL
    FEMS Microbiol Rev; 1989 Dec; 5(4):301-25. PubMed ID: 2560939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of antimicrobial resistance and resistance transfer in anaerobic bacteria.
    Tally FP; Malamy MH
    Scand J Infect Dis Suppl; 1982; 35():37-44. PubMed ID: 6300995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic manipulation of anaerobic cellulolytic bacteria.
    Anderson KL
    SAAS Bull Biochem Biotechnol; 1997; 10():33-6. PubMed ID: 9274059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extrachromosomal and integrated genetic elements in Clostridium difficile.
    Amy J; Johanesen P; Lyras D
    Plasmid; 2015 Jul; 80():97-110. PubMed ID: 25929174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetics of clindamycin resistance in Bacteroides.
    Smith CJ; Liechty MC; Rasmussen JL; Macrina FL
    Basic Life Sci; 1985; 30():555-70. PubMed ID: 2990428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the mobilization region of a Bacteroides insertion element (NBU1) that is excised and transferred by Bacteroides conjugative transposons.
    Li LY; Shoemaker NB; Salyers AA
    J Bacteriol; 1993 Oct; 175(20):6588-98. PubMed ID: 8407836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.