These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30395632)

  • 41. Vascular endothelial growth factor (VEGF)-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia.
    Swanson N; Hogrefe K; Javed Q; Malik N; Gershlick AH
    J Invasive Cardiol; 2003 Dec; 15(12):688-92. PubMed ID: 14660819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoengineered Stent Surface to Reduce In-Stent Restenosis in Vivo.
    Nuhn H; Blanco CE; Desai TA
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19677-19686. PubMed ID: 28574242
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF.
    Wu X; Zhao Y; Tang C; Yin T; Du R; Tian J; Huang J; Gregersen H; Wang G
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7578-89. PubMed ID: 26925508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Impedance Sensor for Pathologically Relevant Detection of In-Stent Restenosis In Vitro.
    Hoare D; Fisher S; Nelson F; Tsiamis A; Marland JRK; Mitra S; Neale SL; Mercer JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2298-2301. PubMed ID: 36086424
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arsenic trioxide eluting stent reduces neointima formation in a rabbit iliac artery injury model.
    Yang W; Ge J; Liu H; Zhao K; Liu X; Qu X; Li W; Huang Y; Sun A; Zou Y
    Cardiovasc Res; 2006 Dec; 72(3):483-93. PubMed ID: 17020754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design.
    Holy EW; Jakob P; Eickner T; Camici GG; Beer JH; Akhmedov A; Sternberg K; Schmitz KP; Lüscher TF; Tanner FC
    Eur Heart J; 2014 Mar; 35(12):808-20. PubMed ID: 24334406
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Platelet-derived growth factor receptor antagonist STI571 (imatinib mesylate) inhibits human vascular smooth muscle proliferation and migration in vitro but not in vivo.
    Hacker TA; Griffin MO; Guttormsen B; Stoker S; Wolff MR
    J Invasive Cardiol; 2007 Jun; 19(6):269-74. PubMed ID: 17541129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Periluminal expression of a secreted transforming growth factor-β type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer.
    Appleby CE; Ranjzad P; Williams PD; Kakar SJ; Driessen A; Tijsma E; Fernandes B; Heagerty AM; Kingston PA
    Hum Gene Ther; 2014 May; 25(5):443-51. PubMed ID: 24483849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative pathology: radiation-induced coronary artery disease in man and animals.
    Virmani R; Farb A; Carter AJ; Jones RM
    Semin Interv Cardiol; 1998; 3(3-4):163-72. PubMed ID: 10406688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of an in vitro system to assess stent-induced smooth muscle cell proliferation: a feasibility study.
    Yazdani SK; Berry JL
    J Vasc Interv Radiol; 2009 Jan; 20(1):101-6. PubMed ID: 19028120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rationale and study design of the OISTER trial: optical coherence tomography evaluation of stent struts re-endothelialization in patients with non-ST-elevation acute coronary syndromes--a comparison of the intrEpide tRapidil eluting stent vs. taxus drug-eluting stent implantation.
    Iaccarino D; Politi L; Rossi R; Sgura F; Monopoli D; Modena MG; Sangiorgi GM
    J Cardiovasc Med (Hagerstown); 2010 Jul; 11(7):536-43. PubMed ID: 20090547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevention of Venous Neointimal Hyperplasia by a Multitarget Receptor Tyrosine Kinase Inhibitor.
    Kwon SH; Li L; He Y; Tey CS; Li H; Zhuplatov I; Kim SJ; Terry CM; Blumenthal DK; Shiu YT; Cheung AK
    J Vasc Res; 2015; 52(4):244-256. PubMed ID: 26788996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemico-physical characterisation and in vivo biocompatibility assessment of DLC-coated coronary stents.
    Castellino M; Stolojan V; Virga A; Rovere M; Cabiale K; Galloni MR; Tagliaferro A
    Anal Bioanal Chem; 2013 Jan; 405(1):321-9. PubMed ID: 23052887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intimal smooth muscle cells of porcine and human coronary artery express S100A4, a marker of the rhomboid phenotype in vitro.
    Brisset AC; Hao H; Camenzind E; Bacchetta M; Geinoz A; Sanchez JC; Chaponnier C; Gabbiani G; Bochaton-Piallat ML
    Circ Res; 2007 Apr; 100(7):1055-62. PubMed ID: 17347479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells.
    Blindt R; Vogt F; Astafieva I; Fach C; Hristov M; Krott N; Seitz B; Kapurniotu A; Kwok C; Dewor M; Bosserhoff AK; Bernhagen J; Hanrath P; Hoffmann R; Weber C
    J Am Coll Cardiol; 2006 May; 47(9):1786-95. PubMed ID: 16682302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of the vascular responses to balloon-expandable stenting in the coronary and peripheral circulations: long-term results in an animal model using the TriMaxx stent.
    Dubé H; Clifford AG; Barry CM; Schwarten DE; Schwartz LB
    J Vasc Surg; 2007 Apr; 45(4):821-7. PubMed ID: 17398392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs.
    He YH; Wang XQ; Zhang J; Liu ZH; Pan WQ; Shen Y; Zhu ZB; Wang LJ; Yan XX; Yang K; Zhang RY; Shen WF; Ding FH; Lu L
    Arterioscler Thromb Vasc Biol; 2017 Apr; 37(4):717-729. PubMed ID: 28183701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A real-time electrical impedance based technique to measure invasion of endothelial cell monolayer by cancer cells.
    Rahim S; Üren A
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21490581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mathematical modelling of the restenosis process after stent implantation.
    Escuer J; Martínez MA; McGinty S; Peña E
    J R Soc Interface; 2019 Aug; 16(157):20190313. PubMed ID: 31409233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.