These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30395698)

  • 1. A Noble-Metal-Free Heterogeneous Photosensitizer-Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light.
    Ulusoy Ghobadi TG; Akhuseyin Yildiz E; Buyuktemiz M; Sadigh Akbari S; Topkaya D; İsci Ü; Dede Y; Yaglioglu HG; Karadas F
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17173-17177. PubMed ID: 30395698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation.
    Ghobadi TGU; Ghobadi A; Demirtas M; Buyuktemiz M; Ozvural KN; Yildiz EA; Erdem E; Yaglioglu HG; Durgun E; Dede Y; Ozbay E; Karadas F
    Chemistry; 2021 Jun; 27(35):8966-8976. PubMed ID: 33929068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust, Precious-Metal-Free Dye-Sensitized Photoanode for Water Oxidation: A Nanosecond-Long Excited-State Lifetime through a Prussian Blue Analogue.
    Ulusoy Ghobadi TG; Ghobadi A; Buyuktemiz M; Yildiz EA; Berna Yildiz D; Yaglioglu HG; Dede Y; Ozbay E; Karadas F
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4082-4090. PubMed ID: 31837274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precious Metal-Free Photocatalytic Water Oxidation by a Layered Double Hydroxide-Prussian Blue Analogue Hybrid Assembly.
    Akbari SS; Karadas F
    ChemSusChem; 2021 Jan; 14(2):679-685. PubMed ID: 33159387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform.
    Kap Z; Karadas F
    Faraday Discuss; 2019 Jul; 215(0):111-122. PubMed ID: 30941392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.
    Lin J; Han Q; Ding Y
    Chem Rec; 2018 Nov; 18(11):1531-1547. PubMed ID: 29863815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst.
    Lazarides T; Delor M; Sazanovich IV; McCormick TM; Georgakaki I; Charalambidis G; Weinstein JA; Coutsolelos AG
    Chem Commun (Camb); 2014 Jan; 50(5):521-3. PubMed ID: 23938601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Charge Transfer between Light Absorber and Co
    Edri E; Cooper JK; Sharp ID; Guldi DM; Frei H
    J Am Chem Soc; 2017 Apr; 139(15):5458-5466. PubMed ID: 28355079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.
    Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical water oxidation by cobalt-Prussian blue coordination polymer and theoretical studies of the electronic structure of the active species.
    Pires BM; Dos Santos PL; Katic V; Strohauer S; Landers R; Formiga ALB; Bonacin JA
    Dalton Trans; 2019 Apr; 48(15):4811-4822. PubMed ID: 30801085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Driven Water Oxidation with Ligand-Engineered Prussian Blue Analogues.
    Ahmad AA; Ulusoy Ghobadi TG; Buyuktemiz M; Ozbay E; Dede Y; Karadas F
    Inorg Chem; 2022 Mar; 61(9):3931-3941. PubMed ID: 35200012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Porphyrin Nanostructures Based on Coordination-Driven Self-Assembly and Their Visible Light Catalytic Degradation of Methylene Blue Dye.
    Shee NK; Kim MK; Kim HJ
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33266509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic water oxidation with a Prussian blue modified brown TiO
    Gundogdu G; Ulusoy Ghobadi TG; Sadigh Akbari S; Ozbay E; Karadas F
    Chem Commun (Camb); 2021 Jan; 57(4):508-511. PubMed ID: 33331359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers.
    Pintado S; Goberna-Ferrón S; Escudero-Adán EC; Galán-Mascarós JR
    J Am Chem Soc; 2013 Sep; 135(36):13270-3. PubMed ID: 23978044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.
    Quaranta A; Charalambidis G; Herrero C; Margiola S; Leibl W; Coutsolelos A; Aukauloo A
    Phys Chem Chem Phys; 2015 Oct; 17(37):24166-72. PubMed ID: 26327298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C
    Hu Y; Thomas MB; Jinadasa RGW; Wang H; D'Souza F
    Chemistry; 2017 Sep; 23(52):12805-12814. PubMed ID: 28591410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting.
    Xuan C; Wang J; Xia W; Peng Z; Wu Z; Lei W; Xia K; Xin HL; Wang D
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26134-26142. PubMed ID: 28718291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.