These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30395706)

  • 1. Ligand-Specific Dissolution of Iron Oxides in Frozen Solutions.
    Menacherry SPM; Kim K; Lee W; Choi CH; Choi W
    Environ Sci Technol; 2018 Dec; 52(23):13766-13773. PubMed ID: 30395706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
    Kim K; Choi W; Hoffmann MR; Yoon HI; Park BK
    Environ Sci Technol; 2010 Jun; 44(11):4142-8. PubMed ID: 20446731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.
    Jeong D; Kim K; Min DW; Choi W
    Environ Sci Technol; 2015 Nov; 49(21):12816-22. PubMed ID: 26444653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halide-induced dissolution of lead(IV) oxide in frozen solution.
    Menacherry SPM; Min DW; Jeong D; Aravindakumar CT; Lee W; Choi W
    J Hazard Mater; 2020 Feb; 384():121298. PubMed ID: 31585282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced dissolution of manganese oxide in ice compared to aqueous phase under illuminated and dark conditions.
    Kim K; Yoon HI; Choi W
    Environ Sci Technol; 2012 Dec; 46(24):13160-6. PubMed ID: 23153016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and Synergic Production of Bioavailable Iron and Reactive Iodine Species in Ice.
    Kim K; Menacherry SPM; Kim J; Chung HY; Jeong D; Saiz-Lopez A; Choi W
    Environ Sci Technol; 2019 Jul; 53(13):7355-7362. PubMed ID: 31081627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frozen Clay Minerals as a Potential Source of Bioavailable Iron and Magnetite.
    Chung HY; Jung J; Yang K; Kim J; Kim K
    Environ Sci Technol; 2023 Dec; 57(48):19805-19816. PubMed ID: 37934905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides.
    Biswakarma J; Kang K; Borowski SC; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Environ Sci Technol; 2019 Jan; 53(1):88-97. PubMed ID: 30571098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Wüstite (FeO) dissolution: implications for reductive dissolution of ferric oxides.
    Jang JH; Brantley SL
    Environ Sci Technol; 2009 Feb; 43(4):1086-90. PubMed ID: 19320162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of tetracycline with aluminum and iron hydrous oxides.
    Gu C; Karthikeyan KG
    Environ Sci Technol; 2005 Apr; 39(8):2660-7. PubMed ID: 15884363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of reductive and ligand-promoted dissolution of goethite.
    Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE
    Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic ligand-induced dissolution kinetics of antimony trioxide.
    Hu X; He M
    J Environ Sci (China); 2017 Jun; 56():87-94. PubMed ID: 28571874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic Formation of Humic-Like Substances through Freezing-Accelerated Reaction of Phenolic Compounds and Nitrite.
    Min DW; Kim K; Lui KH; Kim B; Kim S; Cho J; Choi W
    Environ Sci Technol; 2019 Jul; 53(13):7410-7418. PubMed ID: 31136159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the grain boundary of ice crystals in a frozen gelatin solution on the dielectric properties at a subzero temperature.
    Ueno S; Shirakashi R; Kudoh K; Higuchi T; Do GS; Araki T; Sagara Y
    Biosci Biotechnol Biochem; 2009 Nov; 73(11):2478-82. PubMed ID: 19897916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated Reduction of Bromate in Frozen Solution.
    Min DW; Choi W
    Environ Sci Technol; 2017 Aug; 51(15):8368-8375. PubMed ID: 28650152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.
    Kranzler C; Kessler N; Keren N; Shaked Y
    Environ Microbiol; 2016 Dec; 18(12):5101-5111. PubMed ID: 27516103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.
    Kim K; Yabushita A; Okumura M; Saiz-Lopez A; Cuevas CA; Blaszczak-Boxe CS; Min DW; Yoon HI; Choi W
    Environ Sci Technol; 2016 Feb; 50(3):1280-7. PubMed ID: 26745029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.