These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 30396316)
21. Quantitative structure activity relationship and molecular simulations for the exploration of natural potent VEGFR-2 inhibitors: an Sharma N; Sharma M; Rahman QI; Akhtar S; Muddassir M J Biomol Struct Dyn; 2021 May; 39(8):2806-2823. PubMed ID: 32363995 [TBL] [Abstract][Full Text] [Related]
22. Development of a highly-potent anti-angiogenic VEGF8-109 heterodimer by directed blocking of its VEGFR-2 binding site. Ghavamipour F; Shahangian SS; Sajedi RH; Arab SS; Mansouri K; Aghamaali MR FEBS J; 2014 Oct; 281(19):4479-94. PubMed ID: 25132001 [TBL] [Abstract][Full Text] [Related]
23. Potential inhibitors of VEGFR1, VEGFR2, and VEGFR3 developed through Deep Learning for the treatment of Cervical Cancer. Nayarisseri A; Abdalla M; Joshi I; Yadav M; Bhrdwaj A; Chopra I; Khan A; Saxena A; Sharma K; Panicker A; Panwar U; Mendonça Junior FJB; Singh SK Sci Rep; 2024 Jun; 14(1):13251. PubMed ID: 38858458 [TBL] [Abstract][Full Text] [Related]
24. Recent advances in structure-based drug design and virtual screening of VEGFR tyrosine kinase inhibitors. Hoi PM; Li S; Vong CT; Tseng HH; Kwan YW; Lee SM Methods; 2015 Jan; 71():85-91. PubMed ID: 25239735 [TBL] [Abstract][Full Text] [Related]
25. Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina. Abreu RM; Froufe HJ; Queiroz MJ; Ferreira IC Chem Biol Drug Des; 2012 Apr; 79(4):530-4. PubMed ID: 22188672 [TBL] [Abstract][Full Text] [Related]
26. De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach. Liu YZ; Wang XL; Wang XY; Yu RL; Liu DQ; Kang CM J Mol Model; 2016 Sep; 22(9):222. PubMed ID: 27558799 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and biological evaluation of novel oxazolo[5,4-d]pyrimidines as potent VEGFR-2 inhibitors. Deng YH; Xu D; Su YX; Cheng YJ; Yang YL; Wang XY; Zhang J; You QD; Sun LP Chem Biodivers; 2015 Apr; 12(4):528-37. PubMed ID: 25879498 [TBL] [Abstract][Full Text] [Related]
29. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. Pavic A; Glišić BĐ; Vojnovic S; Warżajtis B; Savić ND; Antić M; Radenković S; Janjić GV; Nikodinovic-Runic J; Rychlewska U; Djuran MI J Inorg Biochem; 2017 Sep; 174():156-168. PubMed ID: 28675847 [TBL] [Abstract][Full Text] [Related]
30. Pharmacophore-Based Virtual Screening and In-Silico Explorations of Biomolecules (Curcumin Derivatives) of Ejaz SA; Aziz M; Fawzy Ramadan M; Fayyaz A; Bilal MS Molecules; 2023 May; 28(10):. PubMed ID: 37241785 [TBL] [Abstract][Full Text] [Related]
31. Virtual Screening, Docking, and Designing of New VEGF Inhibitors as Anti-cancer Agents. Patel S; Singh VR; Suman AK; Jain S; Sen AK Curr Drug Discov Technol; 2024; 21(1):e101023222024. PubMed ID: 38629172 [TBL] [Abstract][Full Text] [Related]
32. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Abdullaziz MA; Abdel-Mohsen HT; El Kerdawy AM; Ragab FAF; Ali MM; Abu-Bakr SM; Girgis AS; El Diwani HI Eur J Med Chem; 2017 Aug; 136():315-329. PubMed ID: 28505536 [TBL] [Abstract][Full Text] [Related]
33. Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Rizvi SU; Siddiqui HL; Nisar M; Khan N; Khan I Bioorg Med Chem Lett; 2012 Jan; 22(2):942-4. PubMed ID: 22200597 [TBL] [Abstract][Full Text] [Related]
34. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design. Shen M; Zhou S; Li Y; Li D; Hou T Mol Biosyst; 2013 Oct; 9(10):2435-46. PubMed ID: 23881296 [TBL] [Abstract][Full Text] [Related]
35. Discovery of novel anti-angiogenesis agents. Part 7: Multitarget inhibitors of VEGFR-2, TIE-2 and EphB4. Li C; Shan Y; Sun Y; Si R; Liang L; Pan X; Wang B; Zhang J Eur J Med Chem; 2017 Dec; 141():506-518. PubMed ID: 29102175 [TBL] [Abstract][Full Text] [Related]
36. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Moradi M; Mousavi A; Emamgholipour Z; Giovannini J; Moghimi S; Peytam F; Honarmand A; Bach S; Foroumadi A Eur J Med Chem; 2023 Nov; 259():115626. PubMed ID: 37453330 [TBL] [Abstract][Full Text] [Related]
37. Discovery of novel tricyclic pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine derivatives as VEGFR-2 inhibitors. Abdel Aziz YM; Said MM; El Shihawy HA; Abouzid KA Bioorg Chem; 2015 Jun; 60():1-12. PubMed ID: 25899678 [TBL] [Abstract][Full Text] [Related]
38. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect. Shi L; Zhou J; Wu J; Shen Y; Li X Curr Med Chem; 2016; 23(10):1000-40. PubMed ID: 26860998 [TBL] [Abstract][Full Text] [Related]
39. Effective virtual screening strategy focusing on the identification of novel Bruton's tyrosine kinase inhibitors. Xiao J; Zhang S; Luo M; Zou Y; Zhang Y; Lai Y J Mol Graph Model; 2015 Jul; 60():142-54. PubMed ID: 26043662 [TBL] [Abstract][Full Text] [Related]
40. Design, synthesis and biological evaluation of pyrimidine-based derivatives as VEGFR-2 tyrosine kinase inhibitors. Sun W; Hu S; Fang S; Yan H Bioorg Chem; 2018 Aug; 78():393-405. PubMed ID: 29677483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]