These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30396351)

  • 21. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 35 Hz shape memory alloy actuator with bending-twisting mode.
    Song SH; Lee JY; Rodrigue H; Choi IS; Kang YJ; Ahn SH
    Sci Rep; 2016 Feb; 6():21118. PubMed ID: 26892438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A magnetic micro-manipulator for application of three dimensional forces.
    Punyabrahma P; Jayanth GR
    Rev Sci Instrum; 2015 Feb; 86(2):025004. PubMed ID: 25725878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centrifugal gas-phase transition magnetophoresis (GTM)--a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification.
    Strohmeier O; Emperle A; Roth G; Mark D; Zengerle R; von Stetten F
    Lab Chip; 2013 Jan; 13(1):146-55. PubMed ID: 23142800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bead-flow pattern: quantitation of fluid movement during torsional and longitudinal phacoemulsification.
    de Castro LE; Dimalanta RC; Solomon KD
    J Cataract Refract Surg; 2010 Jun; 36(6):1018-23. PubMed ID: 20494776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization.
    Lewis AL; Gonzalez MV; Lloyd AW; Hall B; Tang Y; Willis SL; Leppard SW; Wolfenden LC; Palmer RR; Stratford PW
    J Vasc Interv Radiol; 2006 Feb; 17(2 Pt 1):335-42. PubMed ID: 16517780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic Actuation of Drops and Liquid Marbles Using a Deformable Paramagnetic Liquid Substrate.
    Vialetto J; Hayakawa M; Kavokine N; Takinoue M; Varanakkottu SN; Rudiuk S; Anyfantakis M; Morel M; Baigl D
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16565-16570. PubMed ID: 29131511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and performance of a double-solenoid magnetic bottle photoelectron spectrometer for attosecond metrology.
    Kumar M; Singhal H; Ansari A; Chakera JA
    Rev Sci Instrum; 2023 Feb; 94(2):023303. PubMed ID: 36859052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.
    Streque J; Talbi A; Pernod P; Preobrazhensky V
    IEEE Trans Haptics; 2010; 3(2):88-97. PubMed ID: 27788116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated microfluidic platform for magnetic microbeads separation and confinement.
    Ramadan Q; Samper V; Poenar DP; Yu C
    Biosens Bioelectron; 2006 Mar; 21(9):1693-702. PubMed ID: 16203127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Magnetically Actuated Fluidic Drug Delivery Device Using Polyvinyl Chloride Adhesive Stencils.
    Kim H; Seo JM
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic tweezers with magnetic flux density feedback control.
    Moghram WI; Kruger A; Sander EA; Selby JC
    Rev Sci Instrum; 2021 Mar; 92(3):034101. PubMed ID: 33820004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A magnetic stereo-actuation mechanism for active capsule endoscope.
    Wang X; Meng MQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2811-4. PubMed ID: 18002579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A two-magnet strategy for improved mixing and capture from biofluids.
    Scherr TF; Ryskoski HB; Doyle AB; Haselton FR
    Biomicrofluidics; 2016 Mar; 10(2):024118. PubMed ID: 27158286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Her2-overexpressing cancer cells using keyhole shaped chamber array employing a magnetic droplet-handling system.
    Okochi M; Koike S; Tanaka M; Honda H
    Biosens Bioelectron; 2017 Jul; 93():32-39. PubMed ID: 27866824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip.
    Song Z; Li M; Li B; Yan Y; Song Y
    Electrophoresis; 2019 Mar; 40(6):897-905. PubMed ID: 30379341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay.
    Cornaglia M; Trouillon R; Tekin HC; Lehnert T; Gijs MA
    N Biotechnol; 2015 Sep; 32(5):433-40. PubMed ID: 25817550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated microfluidic processing platform for multiplexed magnetic bead immunoassays.
    Sasso LA; Johnston IH; Zheng M; Gupte RK; Ündar A; Zahn JD
    Microfluid Nanofluidics; 2012 Oct; 13(4):603-612. PubMed ID: 26366143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation.
    Koh JS
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.