These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 30397099)

  • 21. The multitasking polyA tail: nuclear RNA maturation, degradation and export.
    Tudek A; Lloret-Llinares M; Jensen TH
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 373(1762):. PubMed ID: 30397105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases.
    Martin G; Doublié S; Keller W
    Biochim Biophys Acta; 2008 Apr; 1779(4):206-16. PubMed ID: 18177750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA polyadenylation and its consequences in prokaryotes.
    Hajnsdorf E; Kaberdin VR
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 373(1762):. PubMed ID: 30397102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uridylation by TUT4 and TUT7 marks mRNA for degradation.
    Lim J; Ha M; Chang H; Kwon SC; Simanshu DK; Patel DJ; Kim VN
    Cell; 2014 Dec; 159(6):1365-76. PubMed ID: 25480299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A family of poly(U) polymerases.
    Kwak JE; Wickens M
    RNA; 2007 Jun; 13(6):860-7. PubMed ID: 17449726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4).
    Thornton JE; Du P; Jing L; Sjekloca L; Lin S; Grossi E; Sliz P; Zon LI; Gregory RI
    Nucleic Acids Res; 2014 Oct; 42(18):11777-91. PubMed ID: 25223788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Terminal Uridylyltransferases Execute Programmed Clearance of Maternal Transcriptome in Vertebrate Embryos.
    Chang H; Yeo J; Kim JG; Kim H; Lim J; Lee M; Kim HH; Ohk J; Jeon HY; Lee H; Jung H; Kim KW; Kim VN
    Mol Cell; 2018 Apr; 70(1):72-82.e7. PubMed ID: 29625039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs.
    Pirouz M; Du P; Munafò M; Gregory RI
    Cell Rep; 2016 Aug; 16(7):1861-73. PubMed ID: 27498873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural insights into a unique preference for 3' terminal guanine of mirtron in Drosophila TUTase tailor.
    Cheng L; Li F; Jiang Y; Yu H; Xie C; Shi Y; Gong Q
    Nucleic Acids Res; 2019 Jan; 47(1):495-508. PubMed ID: 30407553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subcellular specialization of multifaceted 3'end modifying nucleotidyltransferases.
    Minasaki R; Eckmann CR
    Curr Opin Cell Biol; 2012 Jun; 24(3):314-22. PubMed ID: 22551970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners.
    Gagliardi D; Dziembowski A
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 373(1762):. PubMed ID: 30397097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs.
    Bresson SM; Hunter OV; Hunter AC; Conrad NK
    PLoS Genet; 2015 Oct; 11(10):e1005610. PubMed ID: 26484760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of oligouridylation in normal metabolism and regulated degradation of mammalian histone mRNAs.
    Meaux SA; Holmquist CE; Marzluff WF
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 373(1762):. PubMed ID: 30397106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surprises in the 3'-end: 'U' can decide too!
    Viegas SC; Silva IJ; Apura P; Matos RG; Arraiano CM
    FEBS J; 2015 Sep; 282(18):3489-99. PubMed ID: 26183531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic RNA decay pathways - Enzymes and mechanisms.
    Łabno A; Tomecki R; Dziembowski A
    Biochim Biophys Acta; 2016 Dec; 1863(12):3125-3147. PubMed ID: 27713097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA Editing TUTase 1: structural foundation of substrate recognition, complex interactions and drug targeting.
    Rajappa-Titu L; Suematsu T; Munoz-Tello P; Long M; Demir Ö; Cheng KJ; Stagno JR; Luecke H; Amaro RE; Aphasizheva I; Aphasizhev R; Thore S
    Nucleic Acids Res; 2016 Dec; 44(22):10862-10878. PubMed ID: 27744351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction.
    Wen X; Irshad A; Jin H
    Metabolites; 2023 Sep; 13(9):. PubMed ID: 37755289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and mechanism of CutA, RNA nucleotidyl transferase with an unusual preference for cytosine.
    Malik D; Kobyłecki K; Krawczyk P; Poznański J; Jakielaszek A; Napiórkowska A; Dziembowski A; Tomecki R; Nowotny M
    Nucleic Acids Res; 2020 Sep; 48(16):9387-9405. PubMed ID: 32785623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase.
    Ryan CM; Read LK
    RNA; 2005 May; 11(5):763-73. PubMed ID: 15811918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence motifs that distinguish ATP(CTP):tRNA nucleotidyl transferases from eubacterial poly(A) polymerases.
    Martin G; Keller W
    RNA; 2004 Jun; 10(6):899-906. PubMed ID: 15146073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.