These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30397174)

  • 1. The role of parasitism in the energy management of a free-ranging bird.
    Hicks O; Burthe SJ; Daunt F; Newell M; Chastel O; Parenteau C; Green JA
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30397174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.
    Portugal SJ; Green JA; Halsey LG; Arnold W; Careau V; Dann P; Frappell PB; Grémillet D; Handrich Y; Martin GR; Ruf T; Guillemette MM; Butler PJ
    Physiol Biochem Zool; 2016; 89(3):251-61. PubMed ID: 27153134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The energetic cost of parasitism in a wild population.
    Hicks O; Burthe SJ; Daunt F; Newell M; Butler A; Ito M; Sato K; Green JA
    Proc Biol Sci; 2018 May; 285(1879):. PubMed ID: 29848646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis).
    Enstipp MR; Grémillet D; Lorentsen SH
    J Exp Biol; 2005 Sep; 208(Pt 18):3451-61. PubMed ID: 16155218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent correlation between resting metabolic rate and daily energy expenditure in wild chipmunks.
    Careau V; Réale D; Garant D; Pelletier F; Speakman JR; Humphries MM
    J Exp Biol; 2013 Feb; 216(Pt 3):418-26. PubMed ID: 23077163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually variable energy management strategies in relation to energetic costs of egg production.
    Vézina F; Speakman JR; Williams TD
    Ecology; 2006 Oct; 87(10):2447-58. PubMed ID: 17089654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect effects of parasitism: costs of infection to other individuals can be greater than direct costs borne by the host.
    Granroth-Wilding HM; Burthe SJ; Lewis S; Herborn KA; Takahashi EA; Daunt F; Cunningham EJ
    Proc Biol Sci; 2015 Jul; 282(1811):. PubMed ID: 26156765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body size, energy metabolism and lifespan.
    Speakman JR
    J Exp Biol; 2005 May; 208(Pt 9):1717-30. PubMed ID: 15855403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic cost of bot fly parasitism in free-ranging eastern chipmunks.
    Careau V; Thomas DW; Humphries MM
    Oecologia; 2010 Feb; 162(2):303-12. PubMed ID: 19771453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic costs of parasitism in the Cape ground squirrel Xerus inauris.
    Scantlebury M; Waterman JM; Hillegass M; Speakman JR; Bennett NC
    Proc Biol Sci; 2007 Sep; 274(1622):2169-77. PubMed ID: 17613450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resting metabolic rate among Amazonian forager-horticulturalists experiencing high pathogen burden.
    Gurven MD; Trumble BC; Stieglitz J; Yetish G; Cummings D; Blackwell AD; Beheim B; Kaplan HS; Pontzer H
    Am J Phys Anthropol; 2016 Nov; 161(3):414-425. PubMed ID: 27375044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inexplicable inefficiency of avian molt? Insights from an opportunistically breeding arid-zone species, Lichenostomus penicillatus.
    Hoye BJ; Buttemer WA
    PLoS One; 2011 Feb; 6(2):e16230. PubMed ID: 21311594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.
    Lyon BE; Hochachka WM; Eadie JM
    Evolution; 2002 Jun; 56(6):1253-66. PubMed ID: 12144024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic trade-offs between immunity and reproduction in male Japanese quail (Coturnix coturnix).
    Boughton RK; Bridge ES; Schoech SJ
    J Exp Zool A Ecol Genet Physiol; 2007 Sep; 307(9):479-87. PubMed ID: 17647272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds.
    Elliott KH; Welcker J; Gaston AJ; Hatch SA; Palace V; Hare JF; Speakman JR; Anderson WG
    Biol Open; 2013 Jun; 2(6):580-6. PubMed ID: 23789108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals.
    Arnold PA; Delean S; Cassey P; White CR
    J Comp Physiol B; 2021 Nov; 191(6):1097-1110. PubMed ID: 33721034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.
    Rezende EL; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2009; 82(6):662-79. PubMed ID: 19799520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily energy expenditure of males following alternative reproductive tactics: Solitary roamers spend more energy than group-living males.
    Rimbach R; Blanc S; Zahariev A; Pillay N; Schradin C
    Physiol Behav; 2019 Feb; 199():359-365. PubMed ID: 30521878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low resting metabolic rate is associated with greater lifespan because of a confounding effect of body fatness.
    Duarte LC; Speakman JR
    Age (Dordr); 2014; 36(6):9731. PubMed ID: 25502004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic theory of ecology successfully predicts distinct scaling of ectoparasite load on hosts.
    Hechinger RF; Sheehan KL; Turner AV
    Proc Biol Sci; 2019 Dec; 286(1917):20191777. PubMed ID: 31847763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.