These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances. Doinikov AA; Bouakaz A Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104 [TBL] [Abstract][Full Text] [Related]
3. Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system. Sun Y; Zhao S; Dayton PA; Ferrara KW IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1130-7. PubMed ID: 16846145 [TBL] [Abstract][Full Text] [Related]
4. Acoustically Detonated Microbubbles Coupled with Low Frequency Insonation: Multiparameter Evaluation of Low Energy Mechanical Ablation. Bismuth M; Katz S; Rosenblatt H; Twito M; Aronovich R; Ilovitsh T Bioconjug Chem; 2022 Jun; 33(6):1069-1079. PubMed ID: 34280311 [TBL] [Abstract][Full Text] [Related]
5. Modelling Lipid-Coated Microbubbles in Focused Ultrasound Applications at Subresonance Frequencies. Gümmer J; Schenke S; Denner F Ultrasound Med Biol; 2021 Oct; 47(10):2958-2979. PubMed ID: 34344560 [TBL] [Abstract][Full Text] [Related]
6. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Wang S; Samiotaki G; Olumolade O; Feshitan JA; Konofagou EE Ultrasound Med Biol; 2014 Jan; 40(1):130-7. PubMed ID: 24239362 [TBL] [Abstract][Full Text] [Related]
7. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles. Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011 [TBL] [Abstract][Full Text] [Related]
8. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening. Kamimura HA; Wang S; Wu SY; Karakatsani ME; Acosta C; Carneiro AA; Konofagou EE Phys Med Biol; 2015 Oct; 60(19):7695-712. PubMed ID: 26394091 [TBL] [Abstract][Full Text] [Related]
9. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Doinikov AA; Haac JF; Dayton PA Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009 [TBL] [Abstract][Full Text] [Related]
10. Temporal stability of lipid-shelled microbubbles during acoustically-mediated blood-brain barrier opening. Pouliopoulos AN; Jimenez DA; Frank A; Robertson A; Zhang L; Kline-Schoder AR; Bhaskar V; Harpale M; Caso E; Papapanou N; Anderson R; Li R; Konofagou EE Front Phys; 2020 May; 8():. PubMed ID: 32457896 [TBL] [Abstract][Full Text] [Related]
11. Histologic evaluation of activation of acute inflammatory response in a mouse model following ultrasound-mediated blood-brain barrier using different acoustic pressures and microbubble doses. Pascal A; Li N; Lechtenberg KJ; Rosenberg J; Airan RD; James ML; Bouley DM; Pauly KB Nanotheranostics; 2020; 4(4):210-223. PubMed ID: 32802731 [No Abstract] [Full Text] [Related]
13. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study. Chen C; Gu Y; Tu J; Guo X; Zhang D Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263 [TBL] [Abstract][Full Text] [Related]
14. Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Xie F; Boska MD; Lof J; Uberti MG; Tsutsui JM; Porter TR Ultrasound Med Biol; 2008 Dec; 34(12):2028-34. PubMed ID: 18692294 [TBL] [Abstract][Full Text] [Related]
15. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Deng L; O'Reilly MA; Jones RM; An R; Hynynen K Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920 [TBL] [Abstract][Full Text] [Related]