These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 3039750)

  • 41. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics.
    Yubao L; Klein CP; Zhang X; de Groot K
    Biomaterials; 1994 Aug; 15(10):835-41. PubMed ID: 7986949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repair of bone defect with cultured chondrocytes bound to hydroxyapatite.
    Iyoda K; Miura T; Nogami H
    Clin Orthop Relat Res; 1993 Mar; (288):287-93. PubMed ID: 8384537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced healing of rat calvarial critical size defect with selenium-doped lamellar biocomposites.
    Wang Y; Lv P; Ma Z; Zhang J
    Biol Trace Elem Res; 2013 Oct; 155(1):72-81. PubMed ID: 23892698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porosity-graded hydroxyapatite ceramics to replace natural bone.
    Tampieri A; Celotti G; Sprio S; Delcogliano A; Franzese S
    Biomaterials; 2001 Jun; 22(11):1365-70. PubMed ID: 11336309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics.
    Daculsi G; LeGeros RZ; Heughebaert M; Barbieux I
    Calcif Tissue Int; 1990 Jan; 46(1):20-7. PubMed ID: 2153039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The use of ceramics for bone replacement. A comparative study of three different porous ceramics.
    Uchida A; Nade SM; McCartney ER; Ching W
    J Bone Joint Surg Br; 1984 Mar; 66(2):269-75. PubMed ID: 6323483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Experimental studies of the obliteration of extensive radical ear cavities with a new kind of ceramic granulate].
    Schadel A; Ganzer U
    Laryngorhinootologie; 1989 Oct; 68(10):571-5. PubMed ID: 2554938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of a high-velocity flame-spraying technique for hydroxyapatite.
    Oguchi H; Ishikawa K; Ojima S; Hirayama Y; Seto K; Eguchi G
    Biomaterials; 1992; 13(7):471-7. PubMed ID: 1321676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of dual-energy X-ray absorptiometry (DEXA) to follow mineral content changes in small ceramic implants in rats.
    Mosheiff R; Klein BY; Leichter I; Chaimsky G; Nyska A; Peyser A; Segal D
    Biomaterials; 1992; 13(7):462-6. PubMed ID: 1321675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydroxyapatite ceramics and the nature of the bone-ceramic interface.
    Ricci JL; Spivak JM; Alexander H; Blumenthal NC; Parsons JR
    Bull Hosp Jt Dis Orthop Inst; 1989; 49(2):178-91. PubMed ID: 2557940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow.
    Imaizumi H; Sakurai M; Kashimoto O; Kikawa T; Suzuki O
    Calcif Tissue Int; 2006 Jan; 78(1):45-54. PubMed ID: 16397737
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone response to hydroxyapatite particles of different shapes in rabbit tibia.
    Lehtinen R; Kuusilehto A; Nikkanen UM
    J Oral Maxillofac Surg; 1990 Oct; 48(10):1075-8. PubMed ID: 2170603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field.
    Shimizu T; Zerwekh JE; Videman T; Gill K; Mooney V; Holmes RE; Hagler HK
    J Orthop Res; 1988; 6(2):248-58. PubMed ID: 2830390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resorbable structured porous materials in the healing process of hard tissue defects.
    Jamshidi K; Shimizu T; Usui Y; Eberhart RC; Mooney V
    ASAIO Trans; 1988; 34(3):755-60. PubMed ID: 2848566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep.
    Machado CP; Sartoretto SC; Alves AT; Lima IB; Rossi AM; Granjeiro JM; Calasans-Maia MD
    Braz Oral Res; 2016; 30(1):e45. PubMed ID: 27191738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tissue response to composite ceramic hydroxyapatite/demineralized bone implants.
    Pettis GY; Kaban LB; Glowacki J
    J Oral Maxillofac Surg; 1990 Oct; 48(10):1068-74. PubMed ID: 2170602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behaviour of titanium and titania-based ceramics in vitro and in vivo.
    Li J
    Biomaterials; 1993 Feb; 14(3):229-32. PubMed ID: 8386556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydroxyapatite-alumina composites and bone-bonding.
    Li J; Fartash B; Hermansson L
    Biomaterials; 1995 Mar; 16(5):417-22. PubMed ID: 7662828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The dynamics of bone defect healing after the implantation of collagen and hydroxyapatite complexes (an experimental morphological study)].
    Grigor'ian AS; Pulatova NA; Volozhin AI; Istranov LP
    Stomatologiia (Mosk); 1996; 75(5):13-6. PubMed ID: 9045397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone.
    Kitsugi T; Yamamuro T; Takeuchi H; Ono M
    Clin Orthop Relat Res; 1988 Sep; (234):280-90. PubMed ID: 3409586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.