These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 30397649)
21. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
22. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039 [TBL] [Abstract][Full Text] [Related]
23. Advancing osmotic power generation by covalent organic framework monolayer. Yang J; Tu B; Zhang G; Liu P; Hu K; Wang J; Yan Z; Huang Z; Fang M; Hou J; Fang Q; Qiu X; Li L; Tang Z Nat Nanotechnol; 2022 Jun; 17(6):622-628. PubMed ID: 35469012 [TBL] [Abstract][Full Text] [Related]
24. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
25. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels. Wang J; Cui Z; Li S; Song Z; He M; Huang D; Feng Y; Liu Y; Zhou K; Wang X; Wang L Nat Commun; 2024 Jan; 15(1):608. PubMed ID: 38242879 [TBL] [Abstract][Full Text] [Related]
26. In Situ Growth of MOF-303 Membranes onto Porous Anodic Aluminum Oxide Substrates for Harvesting Salinity-Gradient Energy. Pan B; Wang J; Yao C; Zhang S; Wu R; Zeng H; Wang D; Wu C ACS Appl Mater Interfaces; 2023 Dec; 15(51):59463-59474. PubMed ID: 38099706 [TBL] [Abstract][Full Text] [Related]
27. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
28. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
29. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847 [TBL] [Abstract][Full Text] [Related]
30. Porous Ti Hong S; El-Demellawi JK; Lei Y; Liu Z; Marzooqi FA; Arafat HA; Alshareef HN ACS Nano; 2022 Jan; 16(1):792-800. PubMed ID: 35000386 [TBL] [Abstract][Full Text] [Related]
31. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Zhang Z; He L; Zhu C; Qian Y; Wen L; Jiang L Nat Commun; 2020 Feb; 11(1):875. PubMed ID: 32054863 [TBL] [Abstract][Full Text] [Related]
32. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206 [TBL] [Abstract][Full Text] [Related]
33. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Zhu C; Xu L; Liu Y; Liu J; Wang J; Sun H; Lan YQ; Wang C Nat Commun; 2024 May; 15(1):4213. PubMed ID: 38760369 [TBL] [Abstract][Full Text] [Related]
34. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation. Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291 [TBL] [Abstract][Full Text] [Related]
35. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Yip NY; Brogioli D; Hamelers HV; Nijmeijer K Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544 [TBL] [Abstract][Full Text] [Related]
36. Tailoring A Poly(ether sulfone) Bipolar Membrane: Osmotic-Energy Generator with High Power Density. Sun Y; Dong T; Lu C; Xin W; Yang L; Liu P; Qian Y; Zhao Y; Kong XY; Wen L; Jiang L Angew Chem Int Ed Engl; 2020 Sep; 59(40):17423-17428. PubMed ID: 32578316 [TBL] [Abstract][Full Text] [Related]
37. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387 [TBL] [Abstract][Full Text] [Related]
38. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting. Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939 [TBL] [Abstract][Full Text] [Related]
39. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
40. Miniaturized Salinity Gradient Energy Harvesting Devices. Hsu WS; Preet A; Lin TY; Lin TE Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]