BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30398048)

  • 1. Dynamic Interplay between Transport and Reaction Kinetics of Luminophores on the Operation of AC-Driven Electrochemiluminescence Devices.
    Lee JI; Kang D; Kong SH; Gim H; Shin IS; Kim J; Kang MS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41562-41569. PubMed ID: 30398048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Exciplex-Based Light-Emission Pathway for Solution-State Electrochemiluminescent Devices.
    Moon CK; Butscher JF; Gather MC
    Adv Mater; 2023 Sep; 35(38):e2302544. PubMed ID: 37308129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending the Operational Lifetime of Electrochemiluminescence Devices by Installing a Floating Bipolar Electrode.
    Yee H; Lee JI; Park DM; Jung K; Lee S; Kim NH; Kim J; Kim HJ; Kang MS
    Small; 2024 Apr; 20(15):e2307190. PubMed ID: 38009522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why were alternating-current-driven electrochemiluminescence properties from Ru(bpy)3(2+) dramatically improved by the addition of titanium dioxide nanoparticles?
    Tsuneyasu S; Ichihara K; Nakamura K; Kobayashi N
    Phys Chem Chem Phys; 2016 Jun; 18(24):16317-24. PubMed ID: 27253475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices.
    Lee S; Lee HJ; Ji Y; Lee KH; Hong K
    Adv Mater; 2021 Feb; 33(5):e2005456. PubMed ID: 33345385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Response in AC-Driven Electrochemiluminescent Cell Using Electrochemically Active DNA/Ru(bpy)
    Tsuneyasu S; Takahashi R; Minami H; Nakamura K; Kobayashi N
    Sci Rep; 2017 Aug; 7(1):8525. PubMed ID: 28819318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes.
    Soulsby LC; Doeven EH; Pham TT; Eyckens DJ; Henderson LC; Long BM; Guijt RM; Francis PS
    Chem Commun (Camb); 2019 Sep; 55(76):11474-11477. PubMed ID: 31490486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusually Strong Electrochemiluminescence from Iridium-Based Redox Polymers Immobilized As Thin Layers or Polymer Nanoparticles.
    Carrara S; Stringer B; Shokouhi A; Ramkissoon P; Agugiaro J; Wilson DJD; Barnard PJ; Hogan CF
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37251-37257. PubMed ID: 30278121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable and Semitransparent Pressure-Sensitive Light-Emitting Sensor Based on Electrochemiluminescence.
    Kwon DK; Myoung JM
    ACS Nano; 2020 Jul; 14(7):8716-8723. PubMed ID: 32644780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced annihilation electrochemiluminescence by nanofluidic confinement.
    Al-Kutubi H; Voci S; Rassaei L; Sojic N; Mathwig K
    Chem Sci; 2018 Dec; 9(48):8946-8950. PubMed ID: 30647886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in electrochemiluminescence luminophores.
    Abdussalam A; Xu G
    Anal Bioanal Chem; 2022 Jan; 414(1):131-146. PubMed ID: 33893832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemiluminescence reaction pathways in nanofluidic devices.
    Voci S; Al-Kutubi H; Rassaei L; Mathwig K; Sojic N
    Anal Bioanal Chem; 2020 Jul; 412(17):4067-4075. PubMed ID: 32342130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Dot/Light-Emitting Electrochemical Cell Hybrid Device and Mechanism of Its Operation.
    Frohleiks J; Wepfer S; Kelestemur Y; Demir HV; Bacher G; Nannen E
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24692-8. PubMed ID: 27557045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visco-Poroelastic Electrochemiluminescence Skin with Piezo-Ionic Effect.
    Lee JI; Choi H; Kong SH; Park S; Park D; Kim JS; Kwon SH; Kim J; Choi SH; Lee SG; Kim DH; Kang MS
    Adv Mater; 2021 Jul; 33(29):e2100321. PubMed ID: 34060148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films.
    Li H; Sentic M; Ravaine V; Sojic N
    Phys Chem Chem Phys; 2016 Dec; 18(48):32697-32702. PubMed ID: 27731440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Poly(3-octylthiophene-2,5-diyl) Electrochemiluminescence Device Assisted by Perylene.
    Daimon T; Nihei E
    Materials (Basel); 2013 Apr; 6(5):1704-1717. PubMed ID: 28809237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Washable and Flexible Light-Emitting Fibers Based on Electrochemiluminescent Gels.
    Lee S; Cho WS; Park JY; Lee HJ; Lee JL; Lee KH; Hong K
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17709-17718. PubMed ID: 35389205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in electrochemiluminescence.
    Liu Z; Qi W; Xu G
    Chem Soc Rev; 2015 May; 44(10):3117-42. PubMed ID: 25803228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic.
    Moon HC; Lodge TP; Frisbie CD
    J Am Chem Soc; 2014 Mar; 136(9):3705-12. PubMed ID: 24517258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL.
    Liu M; Arias-Aranda LR; Li H; Bouffier L; Kuhn A; Sojic N; Salinas G
    Chemphyschem; 2024 Jun; 25(12):e202400133. PubMed ID: 38624189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.