BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30398162)

  • 1. Influence of pennation angle on measurement of shear wave elastography: in vivo observation of shear wave propagation in human pennate muscle.
    Chino K; Takahashi H
    Physiol Meas; 2018 Nov; 39(11):115003. PubMed ID: 30398162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.
    Miyamoto N; Hirata K; Kanehisa H; Yoshitake Y
    PLoS One; 2015; 10(4):e0124311. PubMed ID: 25853777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy.
    Lee SS; Gaebler-Spira D; Zhang LQ; Rymer WZ; Steele KM
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():20-8. PubMed ID: 26490641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity.
    Yoshitake Y; Takai Y; Kanehisa H; Shinohara M
    Muscle Nerve; 2014 Jul; 50(1):103-13. PubMed ID: 24155045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.
    Chino K; Kawakami Y; Takahashi H
    Clin Physiol Funct Imaging; 2017 Jul; 37(4):394-399. PubMed ID: 26696446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave velocity is sensitive to changes in muscle stiffness that occur independently from changes in force.
    Bernabei M; Lee SSM; Perreault EJ; Sandercock TG
    J Appl Physiol (1985); 2020 Jan; 128(1):8-16. PubMed ID: 31556833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle.
    Aristizabal S; Amador C; Qiang B; Kinnick RR; Nenadic IZ; Greenleaf JF; Urban MW
    Phys Med Biol; 2014 Dec; 59(24):7735-52. PubMed ID: 25419697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography.
    Chino K; Takahashi H
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1230-5. PubMed ID: 26296832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed-Onset Muscle Soreness: Temporal Assessment With Quantitative MRI and Shear-Wave Ultrasound Elastography.
    Agten CA; Buck FM; Dyer L; Flück M; Pfirrmann CW; Rosskopf AB
    AJR Am J Roentgenol; 2017 Feb; 208(2):402-412. PubMed ID: 27845853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of healthy muscle tissue by strain and shear wave elastography - Dependency on depth and ROI position in relation to underlying bone.
    Ewertsen C; Carlsen JF; Christiansen IR; Jensen JA; Nielsen MB
    Ultrasonics; 2016 Sep; 71():127-133. PubMed ID: 27336792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.
    Lima K; Rouffaud R; Pereira W; Oliveira LF
    J Ultrasound Med; 2019 Jan; 38(1):81-90. PubMed ID: 29708284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of muscle architecture in children and adults using magnetic resonance elastography and ultrasound techniques.
    Debernard L; Robert L; Charleux F; Bensamoun SF
    J Biomech; 2011 Feb; 44(3):397-401. PubMed ID: 21074773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Assessment of Shear Wave Propagation in Pennate Muscles Using an Automatic Ultrasound Probe Alignment System.
    Zimmer M; Bunz EK; Ehring T; Kaiser B; Kienzlen A; Schluter H; Zurn M
    IEEE Open J Eng Med Biol; 2023; 4():259-267. PubMed ID: 38196975
    [No Abstract]   [Full Text] [Related]  

  • 18. Changes in shear wave propagation within skeletal muscle during active and passive force generation.
    Wang AB; Perreault EJ; Royston TJ; Lee SSM
    J Biomech; 2019 Sep; 94():115-122. PubMed ID: 31376979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Skin Acts to Maintain Muscle Shear Modulus.
    Yoshitake Y; Miyamoto N; Taniguchi K; Katayose M; Kanehisa H
    Ultrasound Med Biol; 2016 Mar; 42(3):674-82. PubMed ID: 26738629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.