These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30398226)

  • 1. Characterization of manganese oxide amendments for in situ remediation of mercury-contaminated sediments.
    Leven A; Vlassopoulos D; Kanematsu M; Goin J; O'Day PA
    Environ Sci Process Impacts; 2018 Dec; 20(12):1761-1773. PubMed ID: 30398226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater.
    Vlassopoulos D; Kanematsu M; Henry EA; Goin J; Leven A; Glaser D; Brown SS; O'Day PA
    Environ Sci Process Impacts; 2018 Dec; 20(12):1746-1760. PubMed ID: 30393799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.
    Torres NT; Och LM; Hauser PC; Furrer G; Brandl H; Vologina E; Sturm M; Bürgmann H; Müller B
    Environ Sci Process Impacts; 2014 Apr; 16(4):879-89. PubMed ID: 24619231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural attenuation of arsenic by sediment sorption and oxidation.
    Choi S; O'Day PA; Hering JG
    Environ Sci Technol; 2009 Jun; 43(12):4253-9. PubMed ID: 19603631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona.
    Kay JT; Conklin MH; Fuller CC; O'Day PA
    Environ Sci Technol; 2001 Dec; 35(24):4719-25. PubMed ID: 11775144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.
    Zhang G; Liu F; Liu H; Qu J; Liu R
    Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.
    Bai Y; Yang T; Liang J; Qu J
    Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system.
    Duckworth OW; Rivera NA; Gardner TG; Andrews MY; Santelli CM; Polizzotto ML
    Environ Sci Process Impacts; 2017 Jan; 19(1):50-58. PubMed ID: 27942631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe(II) reduction of pyrolusite (β-MnO
    Schaefer MV; Handler RM; Scherer MM
    Geochem Trans; 2017 Dec; 18(1):7. PubMed ID: 29209871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of contaminated marine sediment using thin-layer capping with activated carbon--a field experiment in Trondheim harbor, Norway.
    Cornelissen G; Kruså ME; Breedveld GD; Eek E; Oen AM; Arp HP; Raymond C; Samuelsson G; Hedman JE; Stokland Ø; Gunnarsson JS
    Environ Sci Technol; 2011 Jul; 45(14):6110-6. PubMed ID: 21671651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of Mn(III) on oxidation of Cr(III) with birnessites].
    Tan JF; Qiu GH; Liu F; Tan WF; Feng XH
    Huan Jing Ke Xue; 2009 Sep; 30(9):2779-85. PubMed ID: 19927840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments.
    Wang AO; Ptacek CJ; Blowes DW; Gibson BD; Landis RC; Dyer JA; Ma J
    Sci Total Environ; 2019 Feb; 652():549-561. PubMed ID: 30368184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.
    Tang Y; Zeiner CA; Santelli CM; Hansel CM
    Environ Microbiol; 2013 Apr; 15(4):1063-77. PubMed ID: 23157705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.
    Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED
    Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between Cd and Zn partitioning and geochemical composition in sediments from Chinese rivers.
    Peng SH; Wang WX; Chen J
    Environ Toxicol Chem; 2005 Feb; 24(2):294-303. PubMed ID: 15719988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriogenic manganese oxides.
    Spiro TG; Bargar JR; Sposito G; Tebo BM
    Acc Chem Res; 2010 Jan; 43(1):2-9. PubMed ID: 19778036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.
    McCann CM; Gray ND; Tourney J; Davenport RJ; Wade M; Finlay N; Hudson-Edwards KA; Johnson KL
    Chemosphere; 2015 Nov; 138():211-7. PubMed ID: 26073590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.