These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30398249)

  • 1. Optical frequency comb photoacoustic spectroscopy.
    Sadiek I; Mikkonen T; Vainio M; Toivonen J; Foltynowicz A
    Phys Chem Chem Phys; 2018 Nov; 20(44):27849-27855. PubMed ID: 30398249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive multi-species photoacoustic gas detection based on mid-infrared supercontinuum source and miniature multipass cell.
    Mikkonen T; Hieta T; Genty G; Toivonen J
    Phys Chem Chem Phys; 2022 Aug; 24(32):19481-19487. PubMed ID: 35929451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-immune cavity-enhanced optical frequency comb spectroscopy.
    Khodabakhsh A; Abd Alrahman C; Foltynowicz A
    Opt Lett; 2014 Sep; 39(17):5034-7. PubMed ID: 25166067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-comb quartz-enhanced photoacoustic spectroscopy.
    Ren X; Yan M; Wen Z; Ma H; Li R; Huang K; Zeng H
    Photoacoustics; 2022 Dec; 28():100403. PubMed ID: 36164583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared photoacoustic multicomponent gas spectroscopy with optical cantilever detection.
    Hirschmann CB; Uotila J; Ojala S; Tenhunen J; Keiski RL
    Appl Spectrosc; 2010 Mar; 64(3):293-7. PubMed ID: 20223064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical high-sensitivity resonant photoacoustic sensor for remote CH
    Gong Z; Wu G; Jiang X; Li H; Gao T; Guo M; Ma F; Chen K; Mei L; Peng W; Yu Q
    Opt Express; 2021 Apr; 29(9):13600-13609. PubMed ID: 33985092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-coherence ultra-broadband bidirectional dual-comb fiber laser.
    Nakajima Y; Hata Y; Minoshima K
    Opt Express; 2019 Mar; 27(5):5931-5944. PubMed ID: 30876190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones.
    Fu L; Lu P; Sima C; Zhao J; Pan Y; Li T; Zhang X; Liu D
    Photoacoustics; 2022 Sep; 27():100382. PubMed ID: 36068799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-enhanced photoacoustic dual-comb spectroscopy.
    Wang Z; Nie Q; Sun H; Wang Q; Borri S; De Natale P; Ren W
    Light Sci Appl; 2024 Jan; 13(1):11. PubMed ID: 38177145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoacoustic methane detection inside a MEMS microphone.
    Strahl T; Steinebrunner J; Weber C; Wöllenstein J; Schmitt K
    Photoacoustics; 2023 Feb; 29():100428. PubMed ID: 36544534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband photoacoustic spectroscopy of CH
    Karhu J; Tomberg T; Senna Vieira F; Genoud G; Hänninen V; Vainio M; Metsälä M; Hieta T; Bell S; Halonen L
    Opt Lett; 2019 Mar; 44(5):1142-1145. PubMed ID: 30821733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy.
    Wang J; Wu H; Sampaolo A; Patimisco P; Spagnolo V; Jia S; Dong L
    Light Sci Appl; 2024 Mar; 13(1):77. PubMed ID: 38514679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-noise-limited optical frequency comb spectroscopy.
    Foltynowicz A; Ban T; Masłowski P; Adler F; Ye J
    Phys Rev Lett; 2011 Dec; 107(23):233002. PubMed ID: 22182084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame.
    Abd Alrahman C; Khodabakhsh A; Schmidt FM; Qu Z; Foltynowicz A
    Opt Express; 2014 Jun; 22(11):13889-95. PubMed ID: 24921580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb.
    Adler F; Masłowski P; Foltynowicz A; Cossel KC; Briles TC; Hartl I; Ye J
    Opt Express; 2010 Oct; 18(21):21861-72. PubMed ID: 20941086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferogram-based determination of the absolute mode numbers of optical frequency combs in dual-comb spectroscopy.
    Fukuda T; Okano M; Watanabe S
    Opt Express; 2021 Jul; 29(14):22214-22227. PubMed ID: 34265991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Evaluation of Broadband Photoacoustic Spectroscopy in the Infrared with an Optical Parametric Oscillator.
    Bruhns H; Wolff M; Saalberg Y; Spohr KM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband Time-Resolved Absorption and Dispersion Spectroscopy of Methane and Ethane in a Plasma Using a Mid-Infrared Dual-Comb Spectrometer.
    Abbas MA; Dijk LV; Jahromi KE; Nematollahi M; Harren FJM; Khodabakhsh A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-comb optomechanical spectroscopy.
    Ren X; Pan J; Yan M; Sheng J; Yang C; Zhang Q; Ma H; Wen Z; Huang K; Wu H; Zeng H
    Nat Commun; 2023 Aug; 14(1):5037. PubMed ID: 37596269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.