These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30398327)
1. Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. Peng Q; Chen J; Ji H; Morita A; Ye S J Am Chem Soc; 2018 Nov; 140(46):15568-15571. PubMed ID: 30398327 [TBL] [Abstract][Full Text] [Related]
2. Unraveling the solvent stability on the cathode surface of Li-O Ge A; Nagai R; Nemoto K; Li B; Kannari K; Inoue KI; Ye S Faraday Discuss; 2024 Jan; 248(0):119-133. PubMed ID: 37842815 [TBL] [Abstract][Full Text] [Related]
3. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study. Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821 [TBL] [Abstract][Full Text] [Related]
4. Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery. Yang Y; Zhang T; Wang X; Chen L; Wu N; Liu W; Lu H; Xiao L; Fu L; Zhuang L ACS Appl Mater Interfaces; 2016 Aug; 8(33):21350-7. PubMed ID: 27459128 [TBL] [Abstract][Full Text] [Related]
5. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability. Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. Sharon D; Hirsberg D; Afri M; Chesneau F; Lavi R; Frimer AA; Sun YK; Aurbach D ACS Appl Mater Interfaces; 2015 Aug; 7(30):16590-600. PubMed ID: 26158598 [TBL] [Abstract][Full Text] [Related]
7. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. Ganapathy S; Adams BD; Stenou G; Anastasaki MS; Goubitz K; Miao XF; Nazar LF; Wagemaker M J Am Chem Soc; 2014 Nov; 136(46):16335-44. PubMed ID: 25341076 [TBL] [Abstract][Full Text] [Related]
8. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Yilmaz E; Yogi C; Yamanaka K; Ohta T; Byon HR Nano Lett; 2013 Oct; 13(10):4679-84. PubMed ID: 24024674 [TBL] [Abstract][Full Text] [Related]
9. Probing the Reaction Interface in Li-Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity. Huang J; Tong B; Li Z; Zhou T; Zhang J; Peng Z J Phys Chem Lett; 2018 Jun; 9(12):3403-3408. PubMed ID: 29864272 [TBL] [Abstract][Full Text] [Related]
10. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries. Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088 [TBL] [Abstract][Full Text] [Related]
11. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O Hong M; Yang C; Wong RA; Nakao A; Choi HC; Byon HR J Am Chem Soc; 2018 May; 140(20):6190-6193. PubMed ID: 29739188 [TBL] [Abstract][Full Text] [Related]
12. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. Wen R; Hong M; Byon HR J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397 [TBL] [Abstract][Full Text] [Related]
13. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. Lu YC; Shao-Horn Y J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218 [TBL] [Abstract][Full Text] [Related]
14. Quantitative Delineation of the Low Energy Decomposition Pathway for Lithium Peroxide in Lithium-Oxygen Battery. Dutta A; Ito K; Nomura A; Kubo Y Adv Sci (Weinh); 2020 Oct; 7(19):2001660. PubMed ID: 33042767 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries. Liu Z; De Jesus LR; Banerjee S; Mukherjee PP ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334 [TBL] [Abstract][Full Text] [Related]
16. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li Feng N; Mu X; Zhang X; He P; Zhou H ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362 [TBL] [Abstract][Full Text] [Related]
17. Seed Layer Formation on Carbon Electrodes to Control Li Oh G; Seo S; Kim W; Cho Y; Kwon H; Kim S; Noh S; Kwon E; Oh Y; Song J; Lee J; Ryu K ACS Appl Mater Interfaces; 2021 Mar; 13(11):13200-13211. PubMed ID: 33710866 [TBL] [Abstract][Full Text] [Related]
19. Morphology-Dictated Mechanism of Efficient Reaction Sites for Li Yan H; Wang WW; Wu TR; Gu Y; Li KX; Wu DY; Zheng M; Dong Q; Yan J; Mao BW J Am Chem Soc; 2023 Jun; 145(22):11959-11968. PubMed ID: 37216562 [TBL] [Abstract][Full Text] [Related]