These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30398368)

  • 21. Evaluation of anti-rollback systems in manual wheelchairs: muscular activity and upper limb kinematics during propulsion.
    Wieczorek B; Kukla M; Warguła Ł; Giedrowicz M; Rybarczyk D
    Sci Rep; 2022 Nov; 12(1):19061. PubMed ID: 36351954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of wheelchair configurations on shoulder movements, push rim kinetics and upper limb kinematics while negotiating a speed bump.
    Gawande M; Wang P; Arnold G; Nasir S; Abboud R; Wang W
    Ergonomics; 2022 Jul; 65(7):987-998. PubMed ID: 34842063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation model of a lever-propelled wheelchair.
    Sasaki M; Ota Y; Hase K; Stefanov D; Yamaguchi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6923-6. PubMed ID: 25571588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.
    Slowik JS; Requejo PS; Mulroy SJ; Neptune RR
    J Biomech; 2016 Jun; 49(9):1554-1561. PubMed ID: 27062591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive Forward Dynamic Simulation of Manual Wheelchair Propulsion on a Rolling Dynamometer.
    Brown C; McPhee J
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 32050022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
    Rankin JW; Kwarciak AM; Mark Richter W; Neptune RR
    J Biomech; 2010 Oct; 43(14):2771-9. PubMed ID: 20674921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moment generation in wheelchair propulsion.
    Guo LY; Zhao KD; Su FC; An KN
    Proc Inst Mech Eng H; 2003; 217(5):405-13. PubMed ID: 14558653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wheelchair propulsion biomechanics: implications for wheelchair sports.
    Vanlandewijck Y; Theisen D; Daly D
    Sports Med; 2001; 31(5):339-67. PubMed ID: 11347685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The push force pattern in manual wheelchair propulsion as a balance between cost and effect.
    Rozendaal LA; Veeger HE; van der Woude LH
    J Biomech; 2003 Feb; 36(2):239-47. PubMed ID: 12547361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1996-2002. PubMed ID: 18929029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.