BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30398496)

  • 1. Enhancing intracellular microRNA imaging: a new strategy combining double-channel exciting single colour fluorescence with the target cycling amplification reaction.
    Zhang K; Song S; Yang L; Min Q; Wu X; Zhu JJ
    Chem Commun (Camb); 2018 Nov; 54(93):13131-13134. PubMed ID: 30398496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric Fluorescence Imaging of Intracellular MicroRNA with NIR-Assisted Signal Amplification by a Ru-SiO
    Deng X; Liu X; Wu S; Zang S; Lin X; Zhao Y; Duan C
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45214-45223. PubMed ID: 34524789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanographite-based fluorescent biosensor for detecting microRNA using duplex-specific nuclease-assisted recycling.
    He Q; Luo H; Chen L; Dong J; Chen K; Ning Y
    Luminescence; 2020 May; 35(3):347-354. PubMed ID: 31840880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ biosensor for detection miRNA in living cells based on carbon nitride nanosheets with catalytic hairpin assembly amplification.
    Liao X; Li L; Pan J; Peng T; Ge B; Tang Q
    Luminescence; 2018 Feb; 33(1):190-195. PubMed ID: 28929579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. g-C
    Wang Y; Wu N; Guo F; Gao R; Yang T; Wang J
    J Mater Chem B; 2019 Dec; 7(47):7566-7573. PubMed ID: 31729497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA.
    Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G
    Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomineralized Metal-Organic Framework Nanoparticles Enable Enzymatic Rolling Circle Amplification in Living Cells for Ultrasensitive MicroRNA Imaging.
    Zhang J; He M; Nie C; He M; Pan Q; Liu C; Hu Y; Yi J; Chen T; Chu X
    Anal Chem; 2019 Jul; 91(14):9049-9057. PubMed ID: 31274280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated DNAzyme-based fluorescent nanoprobe for highly sensitive microRNA detection in live cells.
    Wu Y; Meng HM; Chen J; Jiang K; Yang R; Li Y; Zhang K; Qu L; Zhang XB; Li Z
    Chem Commun (Camb); 2020 Jan; 56(3):470-473. PubMed ID: 31828262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification.
    Ma C; Liu S; Shi C
    Biosens Bioelectron; 2014 Aug; 58():57-60. PubMed ID: 24613970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells.
    Cai X; Zhang H; Yu X; Wang W
    Talanta; 2020 Aug; 216():120996. PubMed ID: 32456922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells.
    Wu Y; Han J; Xue P; Xu R; Kang Y
    Nanoscale; 2015 Feb; 7(5):1753-9. PubMed ID: 25514895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction.
    Dong H; Zhang J; Ju H; Lu H; Wang S; Jin S; Hao K; Du H; Zhang X
    Anal Chem; 2012 May; 84(10):4587-93. PubMed ID: 22510208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programming a split G-quadruplex in a DNA nanocage and its microRNA imaging in live cells.
    Yu Y; Zhou Y; Zhu M; Liu M; Zhu H; Chen Y; Su G; Chen W; Peng H
    Chem Commun (Camb); 2019 Apr; 55(35):5131-5134. PubMed ID: 30973555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform.
    Zhu D; Zhang L; Ma W; Lu S; Xing X
    Biosens Bioelectron; 2015 Mar; 65():152-8. PubMed ID: 25461151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasensitive microchip electrophoresis assay based on separation-assisted double cycling signal amplification strategy for microRNA detection in cell lysate.
    Wei K; Zhao J; Luo X; Qiu S; He F; Li S; Zhao S
    Analyst; 2018 Mar; 143(6):1468-1474. PubMed ID: 29473062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P.
    Le BH; Seo YJ
    Bioorg Med Chem Lett; 2018 Jun; 28(11):2035-2038. PubMed ID: 29709251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.
    Li W; Hou T; Wu M; Li F
    Talanta; 2016; 148():116-21. PubMed ID: 26653431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence detection of DNA/microRNA based on cation-exchange of CuS nanoparticles and rolling circle amplification.
    Zhang X; Liu H; Li R; Zhang N; Xiong Y; Niu S
    Chem Commun (Camb); 2015 Apr; 51(32):6952-5. PubMed ID: 25797586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive homogeneous detection of microRNAs in a single cell with specifically designed exponential amplification.
    Gao K; Zhang P; Wang H; Wang H; Su F; Li Z
    Chem Commun (Camb); 2021 Jun; 57(45):5570-5573. PubMed ID: 33969838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.