These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3039866)
1. Hybridization as a technique for studying interchain interactions in the catalytic trimers of aspartate transcarbamoylase. Yang YR; Schachman HK Anal Biochem; 1987 May; 163(1):188-95. PubMed ID: 3039866 [TBL] [Abstract][Full Text] [Related]
2. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions. Peterson CB; Schachman HK J Biol Chem; 1992 Feb; 267(4):2443-50. PubMed ID: 1733944 [TBL] [Abstract][Full Text] [Related]
3. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS; Schachman HK J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547 [TBL] [Abstract][Full Text] [Related]
4. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
5. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Wente SR; Schachman HK Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957 [TBL] [Abstract][Full Text] [Related]
6. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase. Peterson CB; Schachman HK Proc Natl Acad Sci U S A; 1991 Jan; 88(2):458-62. PubMed ID: 1899140 [TBL] [Abstract][Full Text] [Related]
7. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase. Sakash JB; Kantrowitz ER J Biol Chem; 2000 Sep; 275(37):28701-7. PubMed ID: 10875936 [TBL] [Abstract][Full Text] [Related]
8. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
9. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase. Subramani S; Bothwell MA; Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3777-81. PubMed ID: 333446 [TBL] [Abstract][Full Text] [Related]
10. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related]
11. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Yang YR; Schachman HK Protein Sci; 1993 Jun; 2(6):1013-23. PubMed ID: 8318886 [TBL] [Abstract][Full Text] [Related]
12. Assembly of the catalytic trimers of aspartate transcarbamoylase from unfolded polypeptide chains. Burns DL; Schachman HK J Biol Chem; 1982 Aug; 257(15):8648-54. PubMed ID: 7096328 [TBL] [Abstract][Full Text] [Related]
13. The influence of quaternary structure on the active site of an oligomeric enzyme. Catalytic subunit of aspartate transcarbamoylase. Lahue RS; Schachman HK J Biol Chem; 1984 Nov; 259(22):13906-13. PubMed ID: 6389536 [TBL] [Abstract][Full Text] [Related]
14. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E; Markby DW; Schachman HK Proc Natl Acad Sci U S A; 1989 May; 86(9):3094-8. PubMed ID: 2566165 [TBL] [Abstract][Full Text] [Related]
15. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
16. Comparison of active mutants and wild-type aspartate transcarbamoylase of Escherichia coli. Vickers LP; Compton JG; Wall KA; Flatgaard JE; Schachman HK J Biol Chem; 1984 Sep; 259(17):11027-35. PubMed ID: 6381492 [TBL] [Abstract][Full Text] [Related]
17. Aspartate transcarbamoylase molecules lacking one regulatory subunit. Yang YR; Syvanen JM; Nagel GM; Schachman HK Proc Natl Acad Sci U S A; 1974 Mar; 71(3):918-22. PubMed ID: 4595576 [TBL] [Abstract][Full Text] [Related]
18. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability. Peterson CB; Zhou BB; Hsieh D; Creager AN; Schachman HK Protein Sci; 1994 Jun; 3(6):960-6. PubMed ID: 8069225 [TBL] [Abstract][Full Text] [Related]
19. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]