These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Differentiating Keratoconus and Corneal Warpage by Analyzing Focal Change Patterns in Corneal Topography, Pachymetry, and Epithelial Thickness Maps. Tang M; Li Y; Chamberlain W; Louie DJ; Schallhorn JM; Huang D Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT544-9. PubMed ID: 27482824 [TBL] [Abstract][Full Text] [Related]
3. Yield of Display Modules of Corneal Tomography for Early Diagnosis of Corneal Ectasia. Vlasák O; Škorpíková J; Hlinomazová Z; Kalandrová V Cesk Slov Oftalmol; 2019; 74(5):175-183. PubMed ID: 31234630 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes. Wang YM; Chan TCY; Yu M; Jhanji V J Refract Surg; 2017 Sep; 33(9):632-638. PubMed ID: 28880339 [TBL] [Abstract][Full Text] [Related]
5. Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. Muftuoglu O; Ayar O; Ozulken K; Ozyol E; Akıncı A J Cataract Refract Surg; 2013 Sep; 39(9):1348-57. PubMed ID: 23820305 [TBL] [Abstract][Full Text] [Related]
6. Forme fruste keratoconus detection with OCT corneal topography using artificial intelligence algorithms. Mourgues E; Saunier V; Smadja D; Touboul D; Saunier V J Cataract Refract Surg; 2024 Dec; 50(12):1247-1253. PubMed ID: 39223730 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of the specificity and sensitivity of various instrument-guided keratoconus indices and classifiers]. Spira C; Grigoryan A; Szentmáry N; Seitz B; Langenbucher A; Eppig T Ophthalmologe; 2015 Apr; 112(4):353-8. PubMed ID: 25609499 [TBL] [Abstract][Full Text] [Related]
8. Combining Placido and Corneal Wavefront Data for the Detection of Forme Fruste Keratoconus. Saad A; Gatinel D J Refract Surg; 2016 Aug; 32(8):510-6. PubMed ID: 27505311 [TBL] [Abstract][Full Text] [Related]
9. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Arbelaez MC; Versaci F; Vestri G; Barboni P; Savini G Ophthalmology; 2012 Nov; 119(11):2231-8. PubMed ID: 22892148 [TBL] [Abstract][Full Text] [Related]
10. Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis. Fukuda S; Beheregaray S; Hoshi S; Yamanari M; Lim Y; Hiraoka T; Yasuno Y; Oshika T Br J Ophthalmol; 2013 Dec; 97(12):1554-9. PubMed ID: 24081501 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler-Krumeich classification. Kamiya K; Ishii R; Shimizu K; Igarashi A Br J Ophthalmol; 2014 Apr; 98(4):459-63. PubMed ID: 24457362 [TBL] [Abstract][Full Text] [Related]
12. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes. Jhanji V; Yang B; Yu M; Ye C; Leung CK Clin Exp Ophthalmol; 2013 Nov; 41(8):735-45. PubMed ID: 23566209 [TBL] [Abstract][Full Text] [Related]
13. Comparison of corneal measurements in keratoconus using swept-source optical coherence tomography and combined Placido-Scheimpflug imaging. Chan TCY; Biswas S; Yu M; Jhanji V Acta Ophthalmol; 2017 Sep; 95(6):e486-e494. PubMed ID: 27805316 [TBL] [Abstract][Full Text] [Related]
14. Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. Smadja D; Santhiago MR; Mello GR; Krueger RR; Colin J; Touboul D J Refract Surg; 2013 Apr; 29(4):274-81. PubMed ID: 23557226 [TBL] [Abstract][Full Text] [Related]
15. Ocular, corneal, and internal aberrations in eyes with keratoconus, forme fruste keratoconus, and healthy eyes. Naderan M; Jahanrad A; Farjadnia M Int Ophthalmol; 2018 Aug; 38(4):1565-1573. PubMed ID: 28647782 [TBL] [Abstract][Full Text] [Related]
16. [The study of corneal epithelial change in keratoconic eyes with Fourier-domain optical coherence tomographic pachymetry]. Zhao Y; Hong J; Wang F; Cui X; Yang Y; Zhu X; Wu D; Wei A; Chen Y; Wu S; Huang F; Xu J Zhonghua Yan Ke Za Zhi; 2014 Sep; 50(9):665-70. PubMed ID: 25533557 [TBL] [Abstract][Full Text] [Related]
17. Early Tomographic Changes in the Eyes of Patients With Keratoconus. Shajari M; Jaffary I; Herrmann K; Grunwald C; Steinwender G; Mayer WJ; Kohnen T J Refract Surg; 2018 Apr; 34(4):254-259. PubMed ID: 29634840 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. Kovács I; Miháltz K; Kránitz K; Juhász É; Takács Á; Dienes L; Gergely R; Nagy ZZ J Cataract Refract Surg; 2016 Feb; 42(2):275-83. PubMed ID: 27026453 [TBL] [Abstract][Full Text] [Related]
19. Detection of subclinical keratoconus using an automated decision tree classification. Smadja D; Touboul D; Cohen A; Doveh E; Santhiago MR; Mello GR; Krueger RR; Colin J Am J Ophthalmol; 2013 Aug; 156(2):237-246.e1. PubMed ID: 23746611 [TBL] [Abstract][Full Text] [Related]
20. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. Prospero Ponce CM; Rocha KM; Smith SD; Krueger RR J Cataract Refract Surg; 2009 Jun; 35(6):1055-62. PubMed ID: 19465292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]