These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 30399163)
1. Appraisal of the water footprint of irrigated agriculture in a semi-arid area: The Segura River Basin. Martínez-Paz JM; Gomariz-Castillo F; Pellicer-Martínez F PLoS One; 2018; 13(11):e0206852. PubMed ID: 30399163 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain. Pellicer-Martínez F; Martínez-Paz JM Sci Total Environ; 2018 Jun; 627():28-38. PubMed ID: 29426150 [TBL] [Abstract][Full Text] [Related]
3. Water resources management of large hydrological basins in semi-arid regions: Spatial and temporal variability of water footprint of the Upper Euphrates River basin. Muratoglu A; Iraz E; Ercin E Sci Total Environ; 2022 Nov; 846():157396. PubMed ID: 35850329 [TBL] [Abstract][Full Text] [Related]
4. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach. Blanco-Gutiérrez I; Varela-Ortega C; Purkey DR J Environ Manage; 2013 Oct; 128():144-60. PubMed ID: 23732193 [TBL] [Abstract][Full Text] [Related]
5. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Pellicer-Martínez F; Martínez-Paz JM Sci Total Environ; 2016 Nov; 571():561-74. PubMed ID: 27405519 [TBL] [Abstract][Full Text] [Related]
6. Water Ecosystem Services Footprint of agricultural production in Central Italy. Pacetti T; Castelli G; Schröder B; Bresci E; Caporali E Sci Total Environ; 2021 Nov; 797():149095. PubMed ID: 34346365 [TBL] [Abstract][Full Text] [Related]
7. A study on the role and importance of irrigation management in integrated river basin management. Koç C Environ Monit Assess; 2015 Aug; 187(8):488. PubMed ID: 26148688 [TBL] [Abstract][Full Text] [Related]
8. Optimal Allocation of Water Resources and Eco-Compensation Mechanism Model Based on the Interval-Fuzzy Two-Stage Stochastic Programming Method for Tingjiang River. Hao N; Sun P; Yang L; Qiu Y; Chen Y; Zhao W Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010407 [TBL] [Abstract][Full Text] [Related]
9. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
10. Water environmental degradation of the Heihe River Basin in arid northwestern China. Qi SZ; Luo F Environ Monit Assess; 2005 Sep; 108(1-3):205-15. PubMed ID: 16160787 [TBL] [Abstract][Full Text] [Related]
11. Key issues for determining the exploitable water resources in a Mediterranean river basin. Pedro-Monzonís M; Ferrer J; Solera A; Estrela T; Paredes-Arquiola J Sci Total Environ; 2015 Jan; 503-504():319-28. PubMed ID: 25087752 [TBL] [Abstract][Full Text] [Related]
12. Model-based water accounting for integrated assessment of water resources systems at the basin scale. Delavar M; Eini MR; Kuchak VS; Zaghiyan MR; Shahbazi A; Nourmohammadi F; Motamedi A Sci Total Environ; 2022 Jul; 830():154810. PubMed ID: 35341867 [TBL] [Abstract][Full Text] [Related]
13. Participatory modelling to support decision making in water management under uncertainty: two comparative case studies in the Guadiana river basin, Spain. Carmona G; Varela-Ortega C; Bromley J J Environ Manage; 2013 Oct; 128():400-12. PubMed ID: 23792817 [TBL] [Abstract][Full Text] [Related]
14. Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal). Bessa Santos RM; Sanches Fernandes LF; Vitor Cortes RM; Leal Pacheco FA Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31288396 [TBL] [Abstract][Full Text] [Related]
15. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin. Koç C Environ Monit Assess; 2007 Feb; 125(1-3):377-88. PubMed ID: 17171286 [TBL] [Abstract][Full Text] [Related]
16. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. Zhao X; Yang H; Yang Z; Chen B; Qin Y Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890 [TBL] [Abstract][Full Text] [Related]
17. An actionable hydroeconomic Decision Support System for the assessment of water reallocations in irrigated agriculture. A study of minimum environmental flows in the Douro River Basin, Spain. Pérez-Blanco CD; Gil-García L; Saiz-Santiago P J Environ Manage; 2021 Nov; 298():113432. PubMed ID: 34358933 [TBL] [Abstract][Full Text] [Related]
18. An academic analysis with recommendations for water management and planning at the basin scale: A review of water planning in the Segura River Basin. Aldaya MM; Custodio E; Llamas R; Fernández MF; García J; Ródenas MÁ Sci Total Environ; 2019 Apr; 662():755-768. PubMed ID: 30703733 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal evolution and decoupling effects of sustainable water resources utilization in the Yellow River Basin: Based on three-dimensional water ecological footprint. Lai Z; Li L; Huang M; Tao Z; Shi X; Li T J Environ Manage; 2024 Aug; 366():121846. PubMed ID: 39047438 [TBL] [Abstract][Full Text] [Related]
20. Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River Basin of West Africa. Merem EC; Twumasi YA Int J Environ Res Public Health; 2008 Dec; 5(5):464-76. PubMed ID: 19151444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]