BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30399493)

  • 1. Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca
    Veremeichik GN; Grigorchuk VP; Silanteva SA; Shkryl YN; Bulgakov DV; Brodovskaya EV; Bulgakov VP
    Phytochemistry; 2019 Jan; 157():111-120. PubMed ID: 30399493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene.
    Shkryl YN; Veremeichik GN; Makhazen DS; Silantieva SA; Mishchenko NP; Vasileva EA; Fedoreyev SA; Bulgakov VP
    Plant Cell Rep; 2016 Sep; 35(9):1907-16. PubMed ID: 27251124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Zhuravlev YN
    Biotechnol Bioeng; 2011 Jul; 108(7):1734-8. PubMed ID: 21328322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of the auto-inhibitory domain in Arabidopsis AtCPK1 leads to increased salt, cold and heat tolerance in the AtCPK1-transformed Rubia cordifolia L cell cultures.
    Veremeichik GN; Shkryl YN; Gorpenchenko TY; Silantieva SA; Avramenko TV; Brodovskaya EV; Bulgakov VP
    Plant Physiol Biochem; 2021 Feb; 159():372-382. PubMed ID: 33444896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-Level Investigation of
    Veremeichik GN; Bulgakov DV; Konnova YA; Brodovskaya EV; Grigorchuk VP; Bulgakov VP
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDPK-driven changes in the intracellular ROS level and plant secondary metabolism.
    Bulgakov VP; Gorpenchenko TY; Shkryl YN; Veremeichik GN; Mischenko NP; Avramenko TV; Fedoreyev SA; Zhuravlev YN
    Bioeng Bugs; 2011; 2(6):327-30. PubMed ID: 22064507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells.
    Grishchenko OV; Kiselev KV; Tchernoded GK; Fedoreyev SA; Veselova MV; Bulgakov VP; Zhuravlev YN
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7479-89. PubMed ID: 27063013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis.
    Jeong YJ; An CH; Park SC; Pyun JW; Lee J; Kim SW; Kim HS; Kim H; Jeong JC; Kim CY
    J Agric Food Chem; 2018 Apr; 66(16):4099-4105. PubMed ID: 29630360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions.
    Veremeichik GN; Grigorchuk VP; Butovets ES; Lukyanchuk LM; Brodovskaya EV; Bulgakov DV; Bulgakov VP
    Food Chem; 2021 Apr; 342():128292. PubMed ID: 33069538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas fluorescens N21.4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures.
    Algar E; Gutierrez-Mañero FJ; Bonilla A; Lucas JA; Radzki W; Ramos-Solano B
    J Agric Food Chem; 2012 Nov; 60(44):11080-7. PubMed ID: 23039196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Managing activity and Ca
    Veremeichik GN; Shkryl YN; Silantieva SA; Gorpenchenko TY; Brodovskaya EV; Yatsunskaya MS; Bulgakov VP
    Plant Physiol Biochem; 2021 Aug; 165():104-113. PubMed ID: 34034156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS.
    Nakata R; Kimura Y; Aoki K; Yoshinaga N; Teraishi M; Okumoto Y; Huffaker A; Schmelz EA; Mori N
    J Chem Ecol; 2016 Dec; 42(12):1226-1236. PubMed ID: 27826811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids.
    Yoneyama K; Akashi T; Aoki T
    Plant Cell Physiol; 2016 Dec; 57(12):2497-2509. PubMed ID: 27986914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of GmMYBJ3, an R2R3-MYB transcription factor that affects isoflavonoids biosynthesis in soybean.
    Zhao M; Wang T; Wu P; Guo W; Su L; Wang Y; Liu Y; Yan F; Wang Q
    PLoS One; 2017; 12(6):e0179990. PubMed ID: 28654660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of resveratrol production in Vitis amurensis cell cultures by calcium-dependent protein kinases.
    Aleynova OA; Dubrovina AS; Manyakhin AY; Karetin YA; Kiselev KV
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1460-76. PubMed ID: 25410806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response.
    Huang K; Peng L; Liu Y; Yao R; Liu Z; Li X; Yang Y; Wang J
    Biochem Biophys Res Commun; 2018 Mar; 498(1):92-98. PubMed ID: 29196259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase.
    Mameda R; Waki T; Kawai Y; Takahashi S; Nakayama T
    Plant J; 2018 Oct; 96(1):56-74. PubMed ID: 29979476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel soybean (Glycine max) gene encoding a family 3 β-glucosidase has high isoflavone 7-O-glucoside-hydrolyzing activity in transgenic rice.
    Hsu CC; Wu TM; Hsu YT; Wu CW; Hong CY; Su NW
    J Agric Food Chem; 2015 Jan; 63(3):921-8. PubMed ID: 25569564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity.
    Pandey A; Misra P; Khan MP; Swarnkar G; Tewari MC; Bhambhani S; Trivedi R; Chattopadhyay N; Trivedi PK
    Plant Biotechnol J; 2014 Jan; 12(1):69-80. PubMed ID: 24102754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani.
    Lozovaya VV; Lygin AV; Zernova OV; Li S; Hartman GL; Widholm JM
    Plant Physiol Biochem; 2004; 42(7-8):671-9. PubMed ID: 15331097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.