These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 30399495)
21. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Aznar A; Chen NW; Rigault M; Riache N; Joseph D; Desmaële D; Mouille G; Boutet S; Soubigou-Taconnat L; Renou JP; Thomine S; Expert D; Dellagi A Plant Physiol; 2014 Apr; 164(4):2167-83. PubMed ID: 24501001 [TBL] [Abstract][Full Text] [Related]
22. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. Moriconi V; Sellaro R; Ayub N; Soto G; Rugnone M; Shah R; Pathak GP; Gärtner W; Casal JJ Plant J; 2013 Oct; 76(2):322-31. PubMed ID: 23865633 [TBL] [Abstract][Full Text] [Related]
23. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Guo M; Tian F; Wamboldt Y; Alfano JR Mol Plant Microbe Interact; 2009 Sep; 22(9):1069-80. PubMed ID: 19656042 [TBL] [Abstract][Full Text] [Related]
24. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Sohn KH; Lei R; Nemri A; Jones JD Plant Cell; 2007 Dec; 19(12):4077-90. PubMed ID: 18165328 [TBL] [Abstract][Full Text] [Related]
25. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. de Torres Zabala M; Zhai B; Jayaraman S; Eleftheriadou G; Winsbury R; Yang R; Truman W; Tang S; Smirnoff N; Grant M New Phytol; 2016 Feb; 209(3):1120-34. PubMed ID: 26428397 [TBL] [Abstract][Full Text] [Related]
26. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
27. The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7. Gangadharan A; Sreerekha MV; Whitehill J; Ham JH; Mackey D PLoS One; 2013; 8(12):e82032. PubMed ID: 24324742 [TBL] [Abstract][Full Text] [Related]
28. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. Lovelace AH; Smith A; Kvitko BH Mol Plant Microbe Interact; 2018 Jul; 31(7):750-765. PubMed ID: 29460676 [TBL] [Abstract][Full Text] [Related]
29. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. Velásquez AC; Oney M; Huot B; Xu S; He SY New Phytol; 2017 Jun; 214(4):1673-1687. PubMed ID: 28295393 [TBL] [Abstract][Full Text] [Related]
30. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. Armijo G; Salinas P; Monteoliva MI; Seguel A; García C; Villarroel-Candia E; Song W; van der Krol AR; Álvarez ME; Holuigue L Mol Plant Microbe Interact; 2013 Dec; 26(12):1395-406. PubMed ID: 24006883 [TBL] [Abstract][Full Text] [Related]
31. Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system. Crabill E; Joe A; Block A; van Rooyen JM; Alfano JR Plant Physiol; 2010 Sep; 154(1):233-44. PubMed ID: 20624999 [TBL] [Abstract][Full Text] [Related]
32. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis. Wang XY; Li DZ; Li Q; Ma YQ; Yao JW; Huang X; Xu ZQ Plant Physiol Biochem; 2016 Oct; 107():273-287. PubMed ID: 27337039 [TBL] [Abstract][Full Text] [Related]
33. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W; Zhang S; He SY Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [TBL] [Abstract][Full Text] [Related]
34. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. Pavet V; Quintero C; Cecchini NM; Rosa AL; Alvarez ME Mol Plant Microbe Interact; 2006 Jun; 19(6):577-87. PubMed ID: 16776291 [TBL] [Abstract][Full Text] [Related]
35. In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB). Doccula FG; Luoni L; Behera S; Bonza MC; Costa A Methods Mol Biol; 2018; 1743():125-141. PubMed ID: 29332292 [TBL] [Abstract][Full Text] [Related]
36. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Bonfig KB; Gabler A; Simon UK; Luschin-Ebengreuth N; Hatz M; Berger S; Muhammad N; Zeier J; Sinha AK; Roitsch T Mol Plant; 2010 Nov; 3(6):1037-48. PubMed ID: 20833735 [TBL] [Abstract][Full Text] [Related]
37. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Brotman Y; Lisec J; Méret M; Chet I; Willmitzer L; Viterbo A Microbiology (Reading); 2012 Jan; 158(Pt 1):139-146. PubMed ID: 21852347 [TBL] [Abstract][Full Text] [Related]
38. Pseudomonas syringae Catalases Are Collectively Required for Plant Pathogenesis. Guo M; Block A; Bryan CD; Becker DF; Alfano JR J Bacteriol; 2012 Sep; 194(18):5054-64. PubMed ID: 22797762 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. Hamdoun S; Liu Z; Gill M; Yao N; Lu H PLoS One; 2013; 8(12):e83219. PubMed ID: 24349466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]