These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 30399495)
41. Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22. Wang S; Zheng Y; Gu C; He C; Yang M; Zhang X; Guo J; Zhao H; Niu D Mol Plant Microbe Interact; 2018 Mar; 31(3):311-322. PubMed ID: 29090631 [TBL] [Abstract][Full Text] [Related]
42. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081 [TBL] [Abstract][Full Text] [Related]
43. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Eitas TK; Nimchuk ZL; Dangl JL Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6475-80. PubMed ID: 18424557 [TBL] [Abstract][Full Text] [Related]
44. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. Peer M; Stegmann M; Mueller MJ; Waller F FEBS Lett; 2010 Sep; 584(18):4053-6. PubMed ID: 20732322 [TBL] [Abstract][Full Text] [Related]
45. Bacterial RNAs activate innate immunity in Arabidopsis. Lee B; Park YS; Lee S; Song GC; Ryu CM New Phytol; 2016 Jan; 209(2):785-97. PubMed ID: 26499893 [TBL] [Abstract][Full Text] [Related]
46. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Jia Z; Zou B; Wang X; Qiu J; Ma H; Gou Z; Song S; Dong H Biochem Biophys Res Commun; 2010 May; 396(2):522-7. PubMed ID: 20434432 [TBL] [Abstract][Full Text] [Related]
47. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. Chen Z; Kloek AP; Cuzick A; Moeder W; Tang D; Innes RW; Klessig DF; McDowell JM; Kunkel BN Plant J; 2004 Feb; 37(4):494-504. PubMed ID: 14756766 [TBL] [Abstract][Full Text] [Related]
48. Tobacco NtabSPL6-2 can enhance local and systemic resistances of Arabidopsis thaliana to bacterial and fungal pathogens. Gao H; Zhang L; Zhang KL; Yang L; Ma YY; Xu ZQ J Plant Physiol; 2020 Oct; 253():153263. PubMed ID: 32836021 [TBL] [Abstract][Full Text] [Related]
49. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. Bhardwaj V; Meier S; Petersen LN; Ingle RA; Roden LC PLoS One; 2011; 6(10):e26968. PubMed ID: 22066021 [TBL] [Abstract][Full Text] [Related]
50. The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection. Zarattini M; Launay A; Farjad M; Wénès E; Taconnat L; Boutet S; Bernacchia G; Fagard M Mol Plant Pathol; 2017 May; 18(4):540-554. PubMed ID: 27085087 [TBL] [Abstract][Full Text] [Related]
52. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
53. Type III secretion-dependent host defence elicitation and type III secretion-independent growth within leaves by Xanthomonas campestris pv. campestris. Sun W; Liu L; Bent AF Mol Plant Pathol; 2011 Oct; 12(8):731-45. PubMed ID: 21726374 [TBL] [Abstract][Full Text] [Related]
54. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. Petersen LN; Ingle RA; Knight MR; Denby KJ J Exp Bot; 2009; 60(13):3727-35. PubMed ID: 19574254 [TBL] [Abstract][Full Text] [Related]
55. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Chen Z; Agnew JL; Cohen JD; He P; Shan L; Sheen J; Kunkel BN Proc Natl Acad Sci U S A; 2007 Dec; 104(50):20131-6. PubMed ID: 18056646 [TBL] [Abstract][Full Text] [Related]
56. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae. Guan R; Su J; Meng X; Li S; Liu Y; Xu J; Zhang S Plant Physiol; 2015 Sep; 169(1):299-312. PubMed ID: 26265775 [TBL] [Abstract][Full Text] [Related]
57. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Fröhlich A; Gaupels F; Sarioglu H; Holzmeister C; Spannagl M; Durner J; Lindermayr C Plant Physiol; 2012 Jul; 159(3):902-14. PubMed ID: 22555880 [TBL] [Abstract][Full Text] [Related]
58. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Mutka AM; Fawley S; Tsao T; Kunkel BN Plant J; 2013 Jun; 74(5):746-54. PubMed ID: 23521356 [TBL] [Abstract][Full Text] [Related]
59. Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria. Hatsugai N; Nakatsuji A; Unten O; Ogasawara K; Kondo M; Nishimura M; Shimada T; Katagiri F; Hara-Nishimura I Plant Physiol; 2018 Feb; 176(2):1824-1834. PubMed ID: 29242374 [TBL] [Abstract][Full Text] [Related]
60. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Berger S; Benediktyová Z; Matous K; Bonfig K; Mueller MJ; Nedbal L; Roitsch T J Exp Bot; 2007; 58(4):797-806. PubMed ID: 17138624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]