These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30399534)

  • 1. Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification.
    Al-Thanoon NA; Qasim OS; Algamal ZY
    Comput Biol Med; 2018 Dec; 103():262-268. PubMed ID: 30399534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel gene selection algorithm for cancer classification using microarray datasets.
    Alanni R; Hou J; Azzawi H; Xiang Y
    BMC Med Genomics; 2019 Jan; 12(1):10. PubMed ID: 30646919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data.
    Piao Y; Piao M; Park K; Ryu KH
    Bioinformatics; 2012 Dec; 28(24):3306-15. PubMed ID: 23060613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Feature Selection Algorithm mRMR-ICA for Cancer Classification from Microarray Gene Expression Data.
    Wang S; Kong W; Aorigele ; Deng J; Gao S; Zeng W
    Comb Chem High Throughput Screen; 2018; 21(6):420-430. PubMed ID: 29852866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
    Becker N; Toedt G; Lichter P; Benner A
    BMC Bioinformatics; 2011 May; 12():138. PubMed ID: 21554689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. penalizedSVM: a R-package for feature selection SVM classification.
    Becker N; Werft W; Toedt G; Lichter P; Benner A
    Bioinformatics; 2009 Jul; 25(13):1711-2. PubMed ID: 19398451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A group-specific tuning parameter for hybrid of SVM and SCAD in identification of informative genes and pathways.
    Misman MF; Mohamad MS; Deris S; Hashim SZ
    Int J Data Min Bioinform; 2014; 10(2):146-61. PubMed ID: 25796735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification.
    Gao L; Ye M; Lu X; Huang D
    Genomics Proteomics Bioinformatics; 2017 Dec; 15(6):389-395. PubMed ID: 29246519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The construction of support vector machine classifier using the firefly algorithm.
    Chao CF; Horng MH
    Comput Intell Neurosci; 2015; 2015():212719. PubMed ID: 25802511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiobjective binary biogeography based optimization for feature selection using gene expression data.
    Li X; Yin M
    IEEE Trans Nanobioscience; 2013 Dec; 12(4):343-53. PubMed ID: 25003163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-HMOSHSSA: Gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods.
    Sharma A; Rani R
    Comput Methods Programs Biomed; 2019 Sep; 178():219-235. PubMed ID: 31416551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Framework Using Multiple-Filters and an Embedded Approach for an Efficient Selection and Classification of Microarray Data.
    Bonilla-Huerta E; Hernández-Montiel A; Caporal RM; López MA
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):12-26. PubMed ID: 26336138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving accuracy for cancer classification with a new algorithm for genes selection.
    Zhang H; Wang H; Dai Z; Chen MS; Yuan Z
    BMC Bioinformatics; 2012 Nov; 13():298. PubMed ID: 23148517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient statistical feature selection approach for classification of gene expression data.
    Chandra B; Gupta M
    J Biomed Inform; 2011 Aug; 44(4):529-35. PubMed ID: 21241823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer classification from gene expression data by NPPC ensemble.
    Ghorai S; Mukherjee A; Sengupta S; Dutta PK
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):659-71. PubMed ID: 20479504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine.
    Kang C; Huo Y; Xin L; Tian B; Yu B
    J Theor Biol; 2019 Feb; 463():77-91. PubMed ID: 30537483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.
    Elyasigomari V; Lee DA; Screen HR; Shaheed MH
    J Biomed Inform; 2017 Mar; 67():11-20. PubMed ID: 28163197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.
    Alshamlan H; Badr G; Alohali Y
    Biomed Res Int; 2015; 2015():604910. PubMed ID: 25961028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Stage Hybrid Gene Selection Using Mutual Information and Genetic Algorithm for Cancer Data Classification.
    Jansi Rani M; Devaraj D
    J Med Syst; 2019 Jun; 43(8):235. PubMed ID: 31209677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.