BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30399564)

  • 1. Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states.
    Divakar P; Yin K; Wegst UGK
    J Mech Behav Biomed Mater; 2019 Feb; 90():350-364. PubMed ID: 30399564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile properties of freeze-cast collagen scaffolds: How processing conditions affect structure and performance in the dry and fully hydrated states.
    Caruso I; Yin K; Divakar P; Wegst UGK
    J Mech Behav Biomed Mater; 2023 Aug; 144():105897. PubMed ID: 37343356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-property-processing correlations of longitudinal freeze-cast chitosan scaffolds for biomedical applications.
    Yin K; Divakar P; Wegst UGK
    J Mech Behav Biomed Mater; 2021 Sep; 121():104589. PubMed ID: 34126508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications.
    Yin K; Divakar P; Wegst UGK
    Biomacromolecules; 2019 Oct; 20(10):3733-3745. PubMed ID: 31454234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Values and property charts for anisotropic freeze-cast collagen scaffolds for tissue regeneration.
    Divakar P; Yin K; Wegst UGK
    Data Brief; 2019 Feb; 22():502-507. PubMed ID: 30623005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states.
    Varley MC; Neelakantan S; Clyne TW; Dean J; Brooks RA; Markaki AE
    Acta Biomater; 2016 Mar; 33():166-175. PubMed ID: 26827778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():141-7. PubMed ID: 24582233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-property-processing correlations in freeze-cast composite scaffolds.
    Hunger PM; Donius AE; Wegst UG
    Acta Biomater; 2013 May; 9(5):6338-48. PubMed ID: 23321303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.
    Offeddu GS; Ashworth JC; Cameron RE; Oyen ML
    Acta Biomater; 2016 Sep; 41():193-203. PubMed ID: 27255358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic collagen scaffolds with anisotropic pore architecture.
    Davidenko N; Gibb T; Schuster C; Best SM; Campbell JJ; Watson CJ; Cameron RE
    Acta Biomater; 2012 Feb; 8(2):667-76. PubMed ID: 22005330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering.
    Brouwer KM; van Rensch P; Harbers VE; Geutjes PJ; Koens MJ; Wijnen RM; Daamen WF; van Kuppevelt TH
    J Tissue Eng Regen Med; 2011 Jun; 5(6):501-4. PubMed ID: 21604385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bamboo-inspired tubular scaffolds with functional gradients.
    Yin K; Mylo MD; Speck T; Wegst UGK
    J Mech Behav Biomed Mater; 2020 Oct; 110():103826. PubMed ID: 32957175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex architectural control of ice-templated collagen scaffolds using a predictive model.
    Cyr JA; Husmann A; Best SM; Cameron RE
    Acta Biomater; 2022 Nov; 153():260-272. PubMed ID: 36155096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of dense anisotropic collagen scaffolds using biaxial compression.
    Zitnay JL; Reese SP; Tran G; Farhang N; Bowles RD; Weiss JA
    Acta Biomater; 2018 Jan; 65():76-87. PubMed ID: 29128533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
    Kane RJ; Weiss-Bilka HE; Meagher MJ; Liu Y; Gargac JA; Niebur GL; Wagner DR; Roeder RK
    Acta Biomater; 2015 Apr; 17():16-25. PubMed ID: 25644451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.