BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30399736)

  • 1. An instrumented glove for monitoring hand function.
    Mohan A; Tharion G; Kumar RK; Devasahayam SR
    Rev Sci Instrum; 2018 Oct; 89(10):105001. PubMed ID: 30399736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living.
    Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring clinically relevant knee motion with a self-calibrated wearable sensor.
    Hullfish TJ; Qu F; Stoeckl BD; Gebhard PM; Mauck RL; Baxter JR
    J Biomech; 2019 May; 89():105-109. PubMed ID: 30981425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting wearable goniometer technology for motion sensing gloves.
    Carbonaro N; Dalle Mura G; Lorussi F; Paradiso R; De Rossi D; Tognetti A
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1788-95. PubMed ID: 24835230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes.
    Gracia-Ibáñez V; Vergara M; Buffi JH; Murray WM; Sancho-Bru JL
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):587-597. PubMed ID: 28024426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of hand kinematics using inertial and magnetic sensors.
    Kortier HG; Sluiter VI; Roetenberg D; Veltink PH
    J Neuroeng Rehabil; 2014 Apr; 11():70. PubMed ID: 24746123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Data Glove Accuracy and Usability Using a Neural Network When Measuring Finger Joint Range of Motion.
    Connolly J; Condell J; Curran K; Gardiner P
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method to assess angle sensor performance for wearable exoskeletal joint kinematics.
    Bolus NB; Kogler GF; Inan OT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3109-3112. PubMed ID: 28324977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and Validity of Clinically Accessible Smart Glove Technologies to Measure Joint Range of Motion.
    Henderson J; Condell J; Connolly J; Kelly D; Curran K
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a low-cost instrumented glove for hand function assessment.
    Oess NP; Wanek J; Curt A
    J Neuroeng Rehabil; 2012 Jan; 9():2. PubMed ID: 22248160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.
    Bisi MC; Stagni R; Caroselli A; Cappello A
    Med Eng Phys; 2015 Aug; 37(8):813-9. PubMed ID: 26077101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification.
    Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A
    Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An instrumented glove for monitoring MCP joint motion.
    Rand DT; Nicol AC
    Proc Inst Mech Eng H; 1993; 207(4):207-10. PubMed ID: 7802871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tangible Solution for Hand Motion Tracking in Clinical Applications.
    Salchow-Hömmen C; Callies L; Laidig D; Valtin M; Schauer T; Seel T
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process.
    Park Y; Bae J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study.
    Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A
    J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to joint flexion/extension angles measurement based on wearable UWB radios.
    Qi Y; Soh CB; Gunawan E; Low KS; Maskooki A
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):300-8. PubMed ID: 24403428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Difference in the Assessment of Knee Extension/Flexion Angles during Gait between Two Calibration Methods for Wearable Goniometer Sensors.
    Ishida T; Samukawa M
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.