These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 30399736)

  • 1. An instrumented glove for monitoring hand function.
    Mohan A; Tharion G; Kumar RK; Devasahayam SR
    Rev Sci Instrum; 2018 Oct; 89(10):105001. PubMed ID: 30399736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living.
    Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring clinically relevant knee motion with a self-calibrated wearable sensor.
    Hullfish TJ; Qu F; Stoeckl BD; Gebhard PM; Mauck RL; Baxter JR
    J Biomech; 2019 May; 89():105-109. PubMed ID: 30981425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting wearable goniometer technology for motion sensing gloves.
    Carbonaro N; Dalle Mura G; Lorussi F; Paradiso R; De Rossi D; Tognetti A
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1788-95. PubMed ID: 24835230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes.
    Gracia-Ibáñez V; Vergara M; Buffi JH; Murray WM; Sancho-Bru JL
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):587-597. PubMed ID: 28024426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of hand kinematics using inertial and magnetic sensors.
    Kortier HG; Sluiter VI; Roetenberg D; Veltink PH
    J Neuroeng Rehabil; 2014 Apr; 11():70. PubMed ID: 24746123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Data Glove Accuracy and Usability Using a Neural Network When Measuring Finger Joint Range of Motion.
    Connolly J; Condell J; Curran K; Gardiner P
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method to assess angle sensor performance for wearable exoskeletal joint kinematics.
    Bolus NB; Kogler GF; Inan OT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3109-3112. PubMed ID: 28324977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and Validity of Clinically Accessible Smart Glove Technologies to Measure Joint Range of Motion.
    Henderson J; Condell J; Connolly J; Kelly D; Curran K
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a low-cost instrumented glove for hand function assessment.
    Oess NP; Wanek J; Curt A
    J Neuroeng Rehabil; 2012 Jan; 9():2. PubMed ID: 22248160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.
    Bisi MC; Stagni R; Caroselli A; Cappello A
    Med Eng Phys; 2015 Aug; 37(8):813-9. PubMed ID: 26077101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification.
    Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A
    Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An instrumented glove for monitoring MCP joint motion.
    Rand DT; Nicol AC
    Proc Inst Mech Eng H; 1993; 207(4):207-10. PubMed ID: 7802871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tangible Solution for Hand Motion Tracking in Clinical Applications.
    Salchow-Hömmen C; Callies L; Laidig D; Valtin M; Schauer T; Seel T
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process.
    Park Y; Bae J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study.
    Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A
    J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to joint flexion/extension angles measurement based on wearable UWB radios.
    Qi Y; Soh CB; Gunawan E; Low KS; Maskooki A
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):300-8. PubMed ID: 24403428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Difference in the Assessment of Knee Extension/Flexion Angles during Gait between Two Calibration Methods for Wearable Goniometer Sensors.
    Ishida T; Samukawa M
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.