These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30399921)

  • 1. Contributed Review: Instruments for measuring Seebeck coefficient of thin film thermoelectric materials: A mini-review.
    Wang C; Chen F; Sun K; Chen R; Li M; Zhou X; Sun Y; Chen D; Wang G
    Rev Sci Instrum; 2018 Oct; 89(10):101501. PubMed ID: 30399921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectrics.
    Melhem A; Rogé V; Huynh TTD; Stolz A; Talbi A; Tchiffo-Tameko C; Lecas T; Boulmer-Leborgne C; Millon E; Semmar N
    Rev Sci Instrum; 2018 Nov; 89(11):113901. PubMed ID: 30501322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature.
    García-Cañadas J; Min G
    Rev Sci Instrum; 2014 Apr; 85(4):043906. PubMed ID: 24784625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K.
    Martin J; Nolas GS
    Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries.
    Ziolkowski P; Wambach M; Ludwig A; Mueller E
    ACS Comb Sci; 2018 Jan; 20(1):1-18. PubMed ID: 29266920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting.
    Zhang Y; Park SJ
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31137541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Organic-Inorganic Thermoelectric Materials and Devices.
    Jin H; Li J; Iocozzia J; Zeng X; Wei PC; Yang C; Li N; Liu Z; He JH; Zhu T; Wang J; Lin Z; Wang S
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15206-15226. PubMed ID: 30785665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostat for high temperature and transient characterization of thin film thermoelectric materials.
    Singh R; Shakouri A
    Rev Sci Instrum; 2009 Feb; 80(2):025101. PubMed ID: 19256672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Development of Thermoelectric Polymers and Composites.
    Yao H; Fan Z; Cheng H; Guan X; Wang C; Sun K; Ouyang J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700727. PubMed ID: 29356234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning of Thermoelectric Properties of MoSe
    Kim HJ; Van Quang N; Nguyen TH; Kim S; Lee Y; Lee IH; Cho S; Seong MJ; Kim K; Chang YJ
    Nanoscale Res Lett; 2022 Feb; 17(1):26. PubMed ID: 35142901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials.
    Zhang Y; Heo YJ; Park M; Park SJ
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications.
    Lin CC; Huang YC; Usman M; Chao WH; Lin WK; Luo TT; Whang WT; Chen CH; Lu KL
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3400-3406. PubMed ID: 30580511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials.
    Martin J
    Rev Sci Instrum; 2012 Jun; 83(6):065101. PubMed ID: 22755656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of the Seebeck Coefficient and the Electrical and Thermal Conductivity of Hybrid Materials Based on Polypyrrole and Bismuth Nanowires.
    Hnida KE; Pilarczyk K; Knutelski M; Marzec M; Gajewska M; Kosonowski A; Chlebda D; Lis B; Przybylski M
    Chemphyschem; 2018 Jul; 19(13):1617-1626. PubMed ID: 29633465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithography-free resistance thermometry based technique to accurately measure Seebeck coefficient and electrical conductivity for organic and inorganic thin films.
    Kumar P; Repaka DVM; Hippalgaonkar K
    Rev Sci Instrum; 2017 Dec; 88(12):125112. PubMed ID: 29289178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling thermoelectric transport in organic materials.
    Wang D; Shi W; Chen J; Xi J; Shuai Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric Effects of Nanogaps between Two Tips.
    Huang HT; Ho GY; Wei ZH
    Small; 2018 Apr; 14(14):e1703695. PubMed ID: 29473298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film.
    Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput screening for combinatorial thin-film library of thermoelectric materials.
    Watanabe M; Kita T; Fukumura T; Ohtomo A; Ueno K; Kawasaki M
    J Comb Chem; 2008; 10(2):175-8. PubMed ID: 18278874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.