These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30399926)

  • 1. Characterization of the lossy dielectric materials using contour mapping.
    Chao HW; Chang TH
    Rev Sci Instrum; 2018 Oct; 89(10):104705. PubMed ID: 30399926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the complex permittivity of high-κ dielectrics using enhanced field method.
    Chao HW; Wong WS; Chang TH
    Rev Sci Instrum; 2015 Nov; 86(11):114701. PubMed ID: 26628153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Complex Permittivities of Plastics in Irregular Shapes.
    Chao HW; Chen HH; Chang TH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss.
    Wang C; Liu X; Huang Z; Yu S; Yang X; Shang X
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.
    Allen KW; Scott MM; Reid DR; Bean JA; Ellis JD; Morris AP; Marsh JM
    Rev Sci Instrum; 2016 May; 87(5):054703. PubMed ID: 27250447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the dielectric properties of carbon fiber at different processing stages.
    Chao HW; Hsu HC; Chen YR; Chang TH
    Sci Rep; 2021 Sep; 11(1):17475. PubMed ID: 34471198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex permittivity measurements of ferroelectrics employing composite dielectric resonator technique.
    Krupka J; Zychowicz T; Bovtun V; Veljko S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1883-8. PubMed ID: 17036796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.
    Eves EE; Murphy EK; Yakovlev VV
    J Microw Power Electromagn Energy; 2007; 41(4):81-94. PubMed ID: 18557399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope.
    Gregory AP; Blackburn JF; Hodgetts TE; Clarke RN; Lees K; Plint S; Dimitrakis GA
    Ultramicroscopy; 2017 Jan; 172():65-74. PubMed ID: 27865149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope.
    Gregory AP; Blackburn JF; Lees K; Clarke RN; Hodgetts TE; Hanham SM; Klein N
    Ultramicroscopy; 2016 Feb; 161():137-145. PubMed ID: 26686660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Substrate-Integrated Waveguide Loading Multiple Complementary Open Resonant Rings (CSRRs) for Dielectric Constant Measurement.
    Hao H; Wang D; Wang Z
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified calibration method for complex permittivity measurement.
    Chao HW; Chang TH
    Rev Sci Instrum; 2013 Aug; 84(8):084704. PubMed ID: 24007085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-ambiguity-free and accurate permittivity determination from waveguide measurements.
    Hasar UC; Buldu G
    Rev Sci Instrum; 2017 Aug; 88(8):084701. PubMed ID: 28863649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Low-Loss Dielectric Materials for High-Speed and High-Frequency Applications.
    Lee TN; Lau JH; Ko CT; Xia T; Lin E; Yang KM; Lin PB; Peng CY; Chang L; Chen JS; Fang YH; Liao LY; Charn E; Wang J; Tseng TJ
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels.
    Yalçın O; Coşkun R; Okutan M; Öztürk M
    J Phys Chem B; 2013 Aug; 117(30):8931-8. PubMed ID: 23799863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Split Ring Resonators Sensor for Accurate Complex Permittivity Measurements of Solid Dielectrics.
    Al-Behadili AA; Mocanu IA; Codreanu N; Pantazica M
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss/gain-induced ultrathin antireflection coatings.
    Luo J; Li S; Hou B; Lai Y
    Sci Rep; 2016 Jun; 6():28681. PubMed ID: 27349750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.
    Liu W; Sun H; Xu L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Split Ring Resonator Dielectric Probe for Near-Field Dielectric Imaging.
    Isakov D; Stevens CJ; Castles F; Grant PS
    Sci Rep; 2017 May; 7(1):2038. PubMed ID: 28515424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayer Polymer Metacomposites Containing Negative Permittivity Layer for New High-k Materials.
    Wang J; Shi Z; Mao F; Chen S; Wang X
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1793-1800. PubMed ID: 28005330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.