These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30400)

  • 1. Active transport in the photosynthetic bacterium Chromatium vinosum.
    Knaff DB
    Arch Biochem Biophys; 1978 Aug; 189(2):225-30. PubMed ID: 30400
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of the membrane potential in active transport by the photosynthetic bacterium Chromatium vinosum.
    Knaff DB; Whetstone R; Carr JW
    FEBS Lett; 1979 Mar; 99(2):283-6. PubMed ID: 428553
    [No Abstract]   [Full Text] [Related]  

  • 3. ATP-dependent K+ uptake by a photosynthetic purple sulfur bacterium.
    Davidson VL; Knaff DB
    Arch Biochem Biophys; 1982 Feb; 213(2):358-62. PubMed ID: 7073281
    [No Abstract]   [Full Text] [Related]  

  • 4. Lysine and arginine transport in the photosynthetic bacterium Chromatium vinosum.
    Kim YA; Knaff DB
    Arch Biochem Biophys; 1988 Jan; 260(1):134-8. PubMed ID: 3124743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of electron transfer in Chromatium vinosum chromatophores by intravesicular H+ concentration.
    Hashimoto K; Nishimura M
    J Biochem; 1979 Jan; 85(1):57-64. PubMed ID: 33164
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of uncoupler on the rates of cytochrome oxidation and reduction in the photosynthetic bacterium, Chromatium. Evidence for a possible cytochrome switching.
    Rubin AB; Devault D
    Biochim Biophys Acta; 1978 Mar; 501(3):440-8. PubMed ID: 629959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transport of nonpolar amino acids in Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1985 Apr; 238(1):97-110. PubMed ID: 3985631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-aspartate transport in the photosynthetic bacterium Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1983 Aug; 225(1):86-94. PubMed ID: 6614931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores.
    Arata H; Takamiya K; Nishimura M
    Biochim Biophys Acta; 1977 Jan; 459(1):36-46. PubMed ID: 12813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function and properties of a soluble c-type cytochrome c-551 in secondary photosynthetic electron transport in whole cells of Chromatium vinosum as studied with flash spectroscopy.
    Grondelle V; Duysens LN; van der Wel JA; van der Wal HN
    Biochim Biophys Acta; 1977 Aug; 461(2):188-201. PubMed ID: 196641
    [No Abstract]   [Full Text] [Related]  

  • 12. CO2 fixation by Halobacterium halobium.
    Danon A; Caplan SR
    FEBS Lett; 1977 Mar; 74(2):255-8. PubMed ID: 849792
    [No Abstract]   [Full Text] [Related]  

  • 13. Active transport of alpha-methylglucoside by the photosynthetic bacterium Chromatium vinosum.
    Knaff DB; Whetstone R
    Arch Biochem Biophys; 1980 Sep; 203(2):697-701. PubMed ID: 7458349
    [No Abstract]   [Full Text] [Related]  

  • 14. Sodium-dependent alpha-aminoisobutyrate transport by the photosynthetic purple sulfur bacterium Chromatium vinosum.
    Pettitt CA; Davidson VL; Cobb A; Knaff DB
    Arch Biochem Biophys; 1982 Jun; 216(1):306-13. PubMed ID: 7103510
    [No Abstract]   [Full Text] [Related]  

  • 15. ATP-linked sodium transport in Streptococcus faecalis. II. Energy coupling in everted membrane vesicles.
    Heefner DL; Kobayashi H; Harold FM
    J Biol Chem; 1980 Dec; 255(23):11403-7. PubMed ID: 6777379
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton efflux coupled to dark H2 oxidation in whole cells of a marine sulfur photosynthetic bacterium (Chromatium sp. strain Miami PBS1071).
    Kumazawa S; Izawa S; Mitsui A
    J Bacteriol; 1983 Apr; 154(1):185-91. PubMed ID: 6833176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced generation of electric potential difference in membranes of purple and green sulfur bacteria.
    Krasinskaya NP; Samuilov VD
    J Bioenerg Biomembr; 1977 Jun; 9(3):171-80. PubMed ID: 18265514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of light-driven metabolite transport in the photosynthetic bacterium Rhodospirillum rubrum.
    Zebrower M; Loach PA
    J Bacteriol; 1982 Jun; 150(3):1322-8. PubMed ID: 6804443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation.
    Decker SJ; Lang DR
    J Biol Chem; 1977 Sep; 252(17):5936-8. PubMed ID: 408344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of soluble cytochrome c-551 in cyclic electron flow-driven active transport in Chromatium vinosum.
    Knaff DB; Whetstone R; Carr JW
    Biochim Biophys Acta; 1980 Mar; 590(1):50-8. PubMed ID: 6243974
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.