These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30400054)
1. Anti-cancer effect of GV1001 for prostate cancer: function as a ligand of GnRHR. Kim JW; Yadav DK; Kim SJ; Lee MY; Park JM; Kim BS; Kim MH; Park HG; Kang KW Endocr Relat Cancer; 2019 Feb; 26(2):147-162. PubMed ID: 30400054 [TBL] [Abstract][Full Text] [Related]
2. Anti-metastatic effect of GV1001 on prostate cancer cells; roles of GnRHR-mediated Gαs-cAMP pathway and AR-YAP1 axis. Kim JW; Park M; Kim S; Lim SC; Kim HS; Kang KW Cell Biosci; 2021 Nov; 11(1):191. PubMed ID: 34743733 [TBL] [Abstract][Full Text] [Related]
3. Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1α-VEGF signaling axis. Kim BK; Kim BR; Lee HJ; Lee SA; Kim BJ; Kim H; Won YS; Shon WJ; Lee NR; Inn KS; Kim BJ Biomaterials; 2014 Mar; 35(9):2924-33. PubMed ID: 24411674 [TBL] [Abstract][Full Text] [Related]
4. GV1001 interacts with androgen receptor to inhibit prostate cell proliferation in benign prostatic hyperplasia by regulating expression of molecules related to epithelial-mesenchymal transition. Kim Y; Lee D; Jo H; Go C; Yang J; Kang D; Kang JS Aging (Albany NY); 2021 Feb; 13(3):3202-3217. PubMed ID: 33539321 [TBL] [Abstract][Full Text] [Related]
5. hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling. Chen W; Shin KH; Kim S; Shon WJ; Kim RH; Park NH; Kang MK Int J Mol Med; 2018 Jun; 41(6):3211-3220. PubMed ID: 29568955 [TBL] [Abstract][Full Text] [Related]
6. Preclinical evaluation of targeted cytotoxic luteinizing hormone-releasing hormone analogue AN-152 in androgen-sensitive and insensitive prostate cancers. Letsch M; Schally AV; Szepeshazi K; Halmos G; Nagy A Clin Cancer Res; 2003 Oct; 9(12):4505-13. PubMed ID: 14555524 [TBL] [Abstract][Full Text] [Related]
7. Novel vaccine peptide GV1001 effectively blocks β-amyloid toxicity by mimicking the extra-telomeric functions of human telomerase reverse transcriptase. Park HH; Lee KY; Kim S; Lee JW; Choi NY; Lee EH; Lee YJ; Lee SH; Koh SH Neurobiol Aging; 2014 Jun; 35(6):1255-74. PubMed ID: 24439482 [TBL] [Abstract][Full Text] [Related]
8. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Brunsvig PF; Aamdal S; Gjertsen MK; Kvalheim G; Markowski-Grimsrud CJ; Sve I; Dyrhaug M; Trachsel S; Møller M; Eriksen JA; Gaudernack G Cancer Immunol Immunother; 2006 Dec; 55(12):1553-64. PubMed ID: 16491401 [TBL] [Abstract][Full Text] [Related]
9. Protective effects of GV1001 on myocardial ischemia‑reperfusion injury. Chang JE; Kim HJ; Jheon S; Lim C Mol Med Rep; 2017 Nov; 16(5):7315-7320. PubMed ID: 28944828 [TBL] [Abstract][Full Text] [Related]
10. Evidence that prostate gonadotropin-releasing hormone receptors mediate an anti-tumourigenic response to analogue therapy in hormone refractory prostate cancer. Gnanapragasam VJ; Darby S; Khan MM; Lock WG; Robson CN; Leung HY J Pathol; 2005 Jun; 206(2):205-13. PubMed ID: 15818594 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional activation of gonadotropin-releasing hormone (GnRH) receptor gene by GnRH: involvement of multiple signal transduction pathways. Lin X; Conn PM Endocrinology; 1999 Jan; 140(1):358-64. PubMed ID: 9886846 [TBL] [Abstract][Full Text] [Related]
12. Heat shock protein-mediated cell penetration and cytosolic delivery of macromolecules by a telomerase-derived peptide vaccine. Lee SA; Kim BR; Kim BK; Kim DW; Shon WJ; Lee NR; Inn KS; Kim BJ Biomaterials; 2013 Oct; 34(30):7495-505. PubMed ID: 23827187 [TBL] [Abstract][Full Text] [Related]
13. Reduction of ischaemia-reperfusion injury in a rat lung transplantation model by low-concentration GV1001. Chang JE; Kim HJ; Yi E; Jheon S; Kim K Eur J Cardiothorac Surg; 2016 Nov; 50(5):972-979. PubMed ID: 27122609 [TBL] [Abstract][Full Text] [Related]
14. Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Kraus S; Naor Z; Seger R Arch Med Res; 2001; 32(6):499-509. PubMed ID: 11750725 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Kim H; Choi MS; Inn KS; Kim BJ Sci Rep; 2016 Jul; 6():28896. PubMed ID: 27363520 [TBL] [Abstract][Full Text] [Related]
16. Cancer vaccination with telomerase peptide GV1001. Kyte JA Expert Opin Investig Drugs; 2009 May; 18(5):687-94. PubMed ID: 19388882 [TBL] [Abstract][Full Text] [Related]
17. Neural stem cells injured by oxidative stress can be rejuvenated by GV1001, a novel peptide, through scavenging free radicals and enhancing survival signals. Park HH; Yu HJ; Kim S; Kim G; Choi NY; Lee EH; Lee YJ; Yoon MY; Lee KY; Koh SH Neurotoxicology; 2016 Jul; 55():131-141. PubMed ID: 27265016 [TBL] [Abstract][Full Text] [Related]
18. The Novel Peptide Vaccine GV1001 Protects Hearing in a Kanamycin-induced Ototoxicity Mouse Model. Kim SY; Jung G; Shim YJ; Koo JW Otol Neurotol; 2018 Sep; 39(8):e731-e737. PubMed ID: 30015752 [TBL] [Abstract][Full Text] [Related]
19. The luteinizing hormone-releasing hormone receptor in human prostate cancer cells: messenger ribonucleic acid expression, molecular size, and signal transduction pathway. Limonta P; Moretti RM; Marelli MM; Dondi D; Parenti M; Motta M Endocrinology; 1999 Nov; 140(11):5250-6. PubMed ID: 10537155 [TBL] [Abstract][Full Text] [Related]
20. The Telomerase-Derived Anticancer Peptide Vaccine GV1001 as an Extracellular Heat Shock Protein-Mediated Cell-Penetrating Peptide. Kim H; Seo EH; Lee SH; Kim BJ Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]