These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30400091)

  • 61. proBDNF is modified by advanced glycation end products in Alzheimer's disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing.
    Fleitas C; Piñol-Ripoll G; Marfull P; Rocandio D; Ferrer I; Rampon C; Egea J; Espinet C
    Mol Brain; 2018 Nov; 11(1):68. PubMed ID: 30428894
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several
    Frandsen J; Narayanasamy P
    ACS Chem Neurosci; 2022 Apr; 13(8):1165-1177. PubMed ID: 35385645
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dicarbonyl-mediated AGEing and diabetic kidney disease.
    Dimitropoulos A; Rosado CJ; Thomas MC
    J Nephrol; 2020 Oct; 33(5):909-915. PubMed ID: 32170575
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modification of the glyoxalase system in human HL60 promyelocytic leukaemia cells during differentiation to neutrophils in vitro.
    Hooper NI; Tisdale MJ; Thornalley PJ
    Biochim Biophys Acta; 1988 Sep; 966(3):362-9. PubMed ID: 3166382
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxidative stress in Alzheimer's disease hippocampus: a topographical study.
    Cruz-Sánchez FF; Gironès X; Ortega A; Alameda F; Lafuente JV
    J Neurol Sci; 2010 Dec; 299(1-2):163-7. PubMed ID: 20863531
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pathophysiological role of the glyoxalase system in renal hypoxic injury.
    Kumagai T; Nangaku M; Inagi R
    Ann N Y Acad Sci; 2008 Apr; 1126():265-7. PubMed ID: 18448828
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease.
    Hanssen NMJ; Stehouwer CDA; Schalkwijk CG
    Curr Opin Nephrol Hypertens; 2019 Jan; 28(1):26-33. PubMed ID: 30320620
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE.
    Van Herreweghe F; Mao J; Chaplen FW; Grooten J; Gevaert K; Vandekerckhove J; Vancompernolle K
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):949-54. PubMed ID: 11792832
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.
    Yadav SK; Singla-Pareek SL; Ray M; Reddy MK; Sopory SK
    Biochem Biophys Res Commun; 2005 Nov; 337(1):61-7. PubMed ID: 16176800
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glyoxalase pathway of trypanosomatid parasites: a promising chemotherapeutic target.
    Chauhan SC; Padmanabhan PK; Madhubala R
    Curr Drug Targets; 2008 Nov; 9(11):957-65. PubMed ID: 18991608
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Carbonyl toxicology and Alzheimer's disease.
    Picklo MJ; Montine TJ; Amarnath V; Neely MD
    Toxicol Appl Pharmacol; 2002 Nov; 184(3):187-97. PubMed ID: 12460747
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function.
    Choi EM; Suh KS; Kim YJ; Hong SM; Park SY; Chon S
    J Agric Food Chem; 2016 Jan; 64(1):226-35. PubMed ID: 26670935
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease.
    Sibbersen C; Johannsen M
    Essays Biochem; 2020 Feb; 64(1):97-110. PubMed ID: 31939602
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Advanced glycation endproducts in ageing and Alzheimer's disease.
    Münch G; Thome J; Foley P; Schinzel R; Riederer P
    Brain Res Brain Res Rev; 1997 Feb; 23(1-2):134-43. PubMed ID: 9063589
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments.
    Rabbani N; Xue M; Thornalley PJ
    Clin Sci (Lond); 2016 Oct; 130(19):1677-96. PubMed ID: 27555612
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells.
    Wu L; Juurlink BH
    Hypertension; 2002 Mar; 39(3):809-14. PubMed ID: 11897769
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Carbonyl stress phenomena during chronic infection with Opisthorchis felineus.
    Saltykova IV; Ogorodova LM; Ivanov VV; Bogdanov AO; Gereng EA; Perina EA; Brindley PJ; Sazonov AE
    Parasitol Int; 2017 Aug; 66(4):453-457. PubMed ID: 26773869
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet.
    Zhao Y; Zhu Y; Wang P; Sang S
    J Agric Food Chem; 2020 Jul; 68(28):7416-7424. PubMed ID: 32573222
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Passive cigarette smoke and the renal glyoxalase system.
    Biswas S; Gairola CG; Das SK
    Mol Cell Biochem; 2002 Jan; 229(1-2):153-6. PubMed ID: 11936840
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy.
    Jack M; Wright D
    Transl Res; 2012 May; 159(5):355-65. PubMed ID: 22500508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.