These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30400154)

  • 1. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS.
    Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; EscolĂ  A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping.
    Xu R; Li C; Paterson AH
    PLoS One; 2019; 14(2):e0205083. PubMed ID: 30811435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data.
    Jing L; Wei X; Song Q; Wang F
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies.
    Wang X; Singh D; Marla S; Morris G; Poland J
    Plant Methods; 2018; 14():53. PubMed ID: 29997682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.
    Jimenez-Berni JA; Deery DM; Rozas-Larraondo P; Condon ATG; Rebetzke GJ; James RA; Bovill WD; Furbank RT; Sirault XRR
    Front Plant Sci; 2018; 9():237. PubMed ID: 29535749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System.
    Li J; Shi Y; Veeranampalayam-Sivakumar AN; Schachtman DP
    Front Plant Sci; 2018; 9():1406. PubMed ID: 30333843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.
    Luo S; Chen JM; Wang C; Xi X; Zeng H; Peng D; Li D
    Opt Express; 2016 May; 24(11):11578-93. PubMed ID: 27410085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements.
    Banerjee BP; Spangenberg G; Kant S
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale field phenotyping using backpack LiDAR and CropQuant-3D to measure structural variation in wheat.
    Zhu Y; Sun G; Ding G; Zhou J; Wen M; Jin S; Zhao Q; Colmer J; Ding Y; Ober ES; Zhou J
    Plant Physiol; 2021 Oct; 187(2):716-738. PubMed ID: 34608970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat.
    Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H
    Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status.
    Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
    Pricope NG; Halls JN; Mapes KL; Baxley JB; Wu JJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model.
    Ma C; Liu M; Ding F; Li C; Cui Y; Chen W; Wang Y
    Sci Rep; 2022 Mar; 12(1):5473. PubMed ID: 35361910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland.
    Lu R; Zhang P; Fu Z; Jiang J; Wu J; Cao Q; Tian Y; Zhu Y; Cao W; Liu X
    Sci Total Environ; 2023 May; 871():161967. PubMed ID: 36737023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.
    Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deployment of Lidar from a Ground Platform: Customizing a Low-Cost, Information-Rich and User-Friendly Application for Field Phenomics Research.
    Heun JT; Attalah S; French AN; Lehner KR; McKay JK; Mullen JL; Ottman MJ; Andrade-Sanchez P
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.