These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30400171)

  • 1. Effect of Electropulsing Treatment on the Fatigue Crack Growth Behavior of Copper.
    Yin Y; Chen H; Morita Y; Toku Y; Ju Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating.
    Hosoi A; Kishi T; Ju Y
    Materials (Basel); 2013 Sep; 6(9):4213-4225. PubMed ID: 28788327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the Fatigue Crack Propagation of Medium-Entropy Alloys with Heterogeneous Microstructures.
    Liu Y; Jiang P; Duan G; Wang J; Zhou L; Xie J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative in Situ SEM High Cycle Fatigue: The Critical Role of Oxygen on Nanoscale-Void-Controlled Nucleation and Propagation of Small Cracks in Ni Microbeams.
    Barrios A; Gupta S; Castelluccio GM; Pierron ON
    Nano Lett; 2018 Apr; 18(4):2595-2602. PubMed ID: 29489378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
    Yang C; Xu W; Guo B; Shan D; Zhang J
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of zinc on strength and fatigue resistance of amalgam.
    Watkins JH; Nakajima H; Hanaoka K; Zhao L; Iwamoto T; Okabe T
    Dent Mater; 1995 Jan; 11(1):24-33. PubMed ID: 7498605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of surface fatigue cracks in human cortical bone.
    Kruzic JJ; Scott JA; Nalla RK; Ritchie RO
    J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue crack propagation in additively manufactured porous biomaterials.
    Hedayati R; Amin Yavari S; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire.
    Hou JP; Wang Q; Yang HJ; Wu XM; Li CH; Zhang ZF; Li XW
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.
    Araque O; Arzola N; Hernández E
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29649117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.