These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30400171)

  • 21. Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset.
    Jin H; Cui B; Mao L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigative Method for Fatigue Crack Propagation Based on a Small Time Scale.
    Wang H; Zhang W; Zhang J; Dai W; Zhao Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties.
    Sheng Y; Hua Y; Wang X; Zhao X; Chen L; Zhou H; Wang J; Berndt CC; Li W
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29364844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization on Crack Initiation and Early Propagation Region of Nickel-Based Alloys in Very High Cycle Fatigue.
    Chen Z; Dong Z; Liu C; Dai Y; He C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC.
    Gao H; Lin Z; Huang X; Shang H; Zhan J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the J-Integral and Digital Image Correlation (DIC) to Determination of Multiple Crack Propagation Law of UHPC under Flexural Cyclic Loading.
    Niu Y; Fan J; Shi X; Wei J; Jiao C; Hu J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites.
    Pohl PM; Kümmel F; Schunk C; Serrano-Munoz I; Markötter H; Göken M; Höppel HW
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the Enhancement Interactions between Double Parallel Cracks on Fatigue Growth Behaviors.
    Han Z; Qian C; Li H
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remaining Life Assessment for Steel After Low-Cycle Fatigue by Surface Crack Image.
    Shi CS; Zeng B; Liu GL; Zhang KS
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.
    Mohammadi H; Klassen RJ; Wan WK
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1115-25. PubMed ID: 19024159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of firing temperature and water exposure on crack propagation in unglazed porcelain.
    Anusavice KJ; Lee RB
    J Dent Res; 1989 Jun; 68(6):1075-81. PubMed ID: 2808866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue Crack Arrest Induced by Localized Compressive Deformation.
    Barragán ER; Ambriz RR; Frutos JA; García CJ; Gómora CM; Jaramillo D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.