BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 30400220)

  • 21. An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity.
    Krause KE; Jenkins TP; Skaarup C; Engmark M; Casewell NR; Ainsworth S; Lomonte B; Fernández J; Gutiérrez JM; Lund O; Laustsen AH
    PLoS Negl Trop Dis; 2020 Jun; 14(6):e0008366. PubMed ID: 32579606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom.
    Wagstaff SC; Laing GD; Theakston RD; Papaspyridis C; Harrison RA
    PLoS Med; 2006 Jun; 3(6):e184. PubMed ID: 16737347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing the Cross-Neutralisation Potential of Existing Antivenoms for Mitigating the Outcomes of Snakebite in Sub-Saharan Africa.
    Khochare S; Jaglan A; Rashmi U; Dam P; Sunagar K
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antibody Cross-Reactivity in Antivenom Research.
    Ledsgaard L; Jenkins TP; Davidsen K; Krause KE; Martos-Esteban A; Engmark M; Rørdam Andersen M; Lund O; Laustsen AH
    Toxins (Basel); 2018 Sep; 10(10):. PubMed ID: 30261694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyvalent Snake Antivenoms: Production Strategy and Their Therapeutic Benefits.
    Ratanabanangkoon K
    Toxins (Basel); 2023 Aug; 15(9):. PubMed ID: 37755943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Editorial: Novel Immunotherapies Against Envenomings by Snakes and Other Venomous Animals.
    Laustsen AH; Ainsworth S; Lomonte B; Kini RM; Chávez-Olórtegui C
    Front Immunol; 2020; 11():1004. PubMed ID: 32670269
    [No Abstract]   [Full Text] [Related]  

  • 27. Toxin-centric development approach for next-generation antivenoms.
    Laustsen AH
    Toxicon; 2018 Aug; 150():195-197. PubMed ID: 29857088
    [No Abstract]   [Full Text] [Related]  

  • 28. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa.
    Williams DJ; Gutiérrez JM; Calvete JJ; Wüster W; Ratanabanangkoon K; Paiva O; Brown NI; Casewell NR; Harrison RA; Rowley PD; O'Shea M; Jensen SD; Winkel KD; Warrell DA
    J Proteomics; 2011 Aug; 74(9):1735-67. PubMed ID: 21640209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advancements in snake antivenom production.
    Rathore AS; Kumar R; Tiwari OS
    Int J Biol Macromol; 2023 Jun; 240():124478. PubMed ID: 37072061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current research into snake antivenoms, their mechanisms of action and applications.
    Silva A; Isbister GK
    Biochem Soc Trans; 2020 Apr; 48(2):537-546. PubMed ID: 32196542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Guiding recombinant antivenom development by omics technologies.
    Laustsen AH
    N Biotechnol; 2018 Oct; 45():19-27. PubMed ID: 28552814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurological effects of venomous bites and stings: snakes, spiders, and scorpions.
    Del Brutto OH
    Handb Clin Neurol; 2013; 114():349-68. PubMed ID: 23829924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards rationalisation of antivenom use in funnel-web spider envenoming: enzyme immunoassays for venom concentrations.
    Miller M; O'Leary MA; Isbister GK
    Clin Toxicol (Phila); 2016 Mar; 54(3):245-51. PubMed ID: 26678882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antivenom for snakebite envenoming in Sri Lanka: the need for geographically specific antivenom and improved efficacy.
    Keyler DE; Gawarammana I; Gutiérrez JM; Sellahewa KH; McWhorter K; Malleappah R
    Toxicon; 2013 Jul; 69():90-7. PubMed ID: 23454626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Report of a WHO workshop on the standardization and control of antivenoms.
    Theakston RD; Warrell DA; Griffiths E
    Toxicon; 2003 Apr; 41(5):541-57. PubMed ID: 12676433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms.
    León G; Herrera M; Segura Á; Villalta M; Vargas M; Gutiérrez JM
    Toxicon; 2013 Dec; 76():63-76. PubMed ID: 24055551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of potent polyvalent antivenom against three elapid venoms using a low dose, low volume, multi-site immunization protocol.
    Chotwiwatthanakun C; Pratanaphon R; Akesowan S; Sriprapat S; Ratanabanangkoon K
    Toxicon; 2001 Oct; 39(10):1487-94. PubMed ID: 11478956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms.
    Laustsen AH; Dorrestijn N
    Toxins (Basel); 2018 Jul; 10(8):. PubMed ID: 30065185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Australian taipan (Oxyuranus spp.) envenoming: clinical effects and potential benefits of early antivenom therapy - Australian Snakebite Project (ASP-25).
    Johnston CI; Ryan NM; O'Leary MA; Brown SG; Isbister GK
    Clin Toxicol (Phila); 2017 Feb; 55(2):115-122. PubMed ID: 27903075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom.
    Ramos HR; Junqueira-de-Azevedo Ide L; Novo JB; Castro K; Duarte CG; Machado-de-Ávila RA; Chavez-Olortegui C; Ho PL
    PLoS Negl Trop Dis; 2016 Mar; 10(3):e0004484. PubMed ID: 26938217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.