These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30400282)

  • 1. Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions.
    Gioffré M; Coppola G; Iodice M; Casalino M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertically Illuminated, Resonant Cavity Enhanced, Graphene-Silicon Schottky Photodetectors.
    Casalino M; Sassi U; Goykhman I; Eiden A; Lidorikis E; Milana S; De Fazio D; Tomarchio F; Iodice M; Coppola G; Ferrari AC
    ACS Nano; 2017 Nov; 11(11):10955-10963. PubMed ID: 29072904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Investigation of Near-Infrared Fabry-Pérot Microcavity Graphene/Silicon Schottky Photodetectors Based on Double Silicon on Insulator Substrates.
    Casalino M
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32707786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perovskite-Erbium Silicate Nanosheet Hybrid Waveguide Photodetectors at the Near-Infrared Telecommunication Band.
    Zhang X; Yang S; Zhou H; Liang J; Liu H; Xia H; Zhu X; Jiang Y; Zhang Q; Hu W; Zhuang X; Liu H; Hu W; Wang X; Pan A
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono- and Bilayer Graphene/Silicon Photodetectors Based on Optical Microcavities Formed by Metallic and Double Silicon-on-Insulator Reflectors: A Theoretical Investigation.
    Crisci T; Moretti L; Gioffrè M; Casalino M
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.
    Selvi H; Unsuree N; Whittaker E; Halsall MP; Hill EW; Thomas A; Parkinson P; Echtermeyer TJ
    Nanoscale; 2018 Feb; 10(7):3399-3409. PubMed ID: 29388650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.
    Vabbina P; Choudhary N; Chowdhury AA; Sinha R; Karabiyik M; Das S; Choi W; Pala N
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15206-13. PubMed ID: 26148017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers.
    Hosseinifar M; Ahmadi V; Ebnali-Heidari M
    Opt Lett; 2017 Dec; 42(24):5066-5069. PubMed ID: 29240138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-silicon-on-insulator (GSOI) Schottky diode photodetectors.
    Selvi H; Hill EW; Parkinson P; Echtermeyer TJ
    Nanoscale; 2018 Oct; 10(40):18926-18935. PubMed ID: 30298152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Physics behind the Modulation of Thermionic Current in Photodetectors Based on Graphene Embedded between Amorphous and Crystalline Silicon.
    Crisci T; Maccagnani P; Moretti L; Summonte C; Gioffrè M; Rizzoli R; Casalino M
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform.
    Wang J; Hu J; Becla P; Agarwal AM; Kimerling LC
    Opt Express; 2010 Jun; 18(12):12890-6. PubMed ID: 20588417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared Photodetector Based on the Photothermionic Effect of Graphene-Nanowall/Silicon Heterojunction.
    Liu X; Zhou Q; Luo S; Du H; Cao Z; Peng X; Feng W; Shen J; Wei D
    ACS Appl Mater Interfaces; 2019 May; 11(19):17663-17669. PubMed ID: 31007009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain.
    Goykhman I; Sassi U; Desiatov B; Mazurski N; Milana S; de Fazio D; Eiden A; Khurgin J; Shappir J; Levy U; Ferrari AC
    Nano Lett; 2016 May; 16(5):3005-13. PubMed ID: 27053042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm.
    Casalino M; Coppola G; Iodice M; Rendina I; Sirleto L
    Opt Express; 2012 May; 20(11):12599-609. PubMed ID: 22714247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors.
    Huang Z; Mao Y; Lin G; Yi X; Chang A; Li C; Chen S; Huang W; Wang J
    Opt Express; 2018 Mar; 26(5):5827-5834. PubMed ID: 29529784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared.
    De Iacovo A; Venettacci C; Colace L; Scopa L; Foglia S
    Sci Rep; 2016 Nov; 6():37913. PubMed ID: 27885269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD.
    Dushaq G; Nayfeh A; Rasras M
    Opt Express; 2017 Dec; 25(25):32110-32119. PubMed ID: 29245875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives.
    Casalino M; Coppola G; Iodice M; Rendina I; Sirleto L
    Sensors (Basel); 2010; 10(12):10571-600. PubMed ID: 22163487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-graphene conductive photodetector with ultra-high responsivity.
    Liu J; Yin Y; Yu L; Shi Y; Liang D; Dai D
    Sci Rep; 2017 Jan; 7():40904. PubMed ID: 28106084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection.
    Nazirzadeh MA; Atar FB; Turgut BB; Okyay AK
    Sci Rep; 2014 Nov; 4():7103. PubMed ID: 25407509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.