BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 30400321)

  • 1. Plant Calcium Signaling in Response to Potassium Deficiency.
    Wang X; Hao L; Zhu B; Jiang Z
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis.
    Cheong YH; Pandey GK; Grant JJ; Batistic O; Li L; Kim BG; Lee SC; Kudla J; Luan S
    Plant J; 2007 Oct; 52(2):223-39. PubMed ID: 17922773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis.
    Liu LL; Ren HM; Chen LQ; Wang Y; Wu WH
    Plant Physiol; 2013 Jan; 161(1):266-77. PubMed ID: 23109687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting paradigms of Ca
    Bender KW; Zielinski RE; Huber SC
    Biochem J; 2018 Jan; 475(1):207-223. PubMed ID: 29305430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins.
    Hashimoto K; Eckert C; Anschütz U; Scholz M; Held K; Waadt R; Reyer A; Hippler M; Becker D; Kudla J
    J Biol Chem; 2012 Mar; 287(11):7956-68. PubMed ID: 22253446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in
    Li KL; Xue H; Tang RJ; Luan S
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2316011120. PubMed ID: 37967217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis.
    Li L; Kim BG; Cheong YH; Pandey GK; Luan S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12625-30. PubMed ID: 16895985
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Yadav AK; Jha SK; Sanyal SK; Luan S; Pandey GK
    Biochem J; 2018 Aug; 475(16):2621-2636. PubMed ID: 30054434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice.
    Kanwar P; Sanyal SK; Tokas I; Yadav AK; Pandey A; Kapoor S; Pandey GK
    Cell Calcium; 2014 Aug; 56(2):81-95. PubMed ID: 24970010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CBL-CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries.
    Tang RJ; Wang C; Li K; Luan S
    Trends Plant Sci; 2020 Jun; 25(6):604-617. PubMed ID: 32407699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A calcium signalling network activates vacuolar K
    Tang RJ; Zhao FG; Yang Y; Wang C; Li K; Kleist TJ; Lemaux PG; Luan S
    Nat Plants; 2020 Apr; 6(4):384-393. PubMed ID: 32231253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca
    Verma P; Sanyal SK; Pandey GK
    Plant Cell Rep; 2021 Nov; 40(11):2111-2122. PubMed ID: 34415375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis.
    Li KL; Tang RJ; Wang C; Luan S
    Nat Commun; 2023 Jan; 14(1):360. PubMed ID: 36690625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots.
    Ragel P; Ródenas R; García-Martín E; Andrés Z; Villalta I; Nieves-Cordones M; Rivero RM; Martínez V; Pardo JM; Quintero FJ; Rubio F
    Plant Physiol; 2015 Dec; 169(4):2863-73. PubMed ID: 26474642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.
    Kolukisaoglu U; Weinl S; Blazevic D; Batistic O; Kudla J
    Plant Physiol; 2004 Jan; 134(1):43-58. PubMed ID: 14730064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CBL-CIPK network mediates different signaling pathways in plants.
    Yu Q; An L; Li W
    Plant Cell Rep; 2014 Feb; 33(2):203-14. PubMed ID: 24097244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes.
    Zhou L; Fu Y; Yang Z
    J Integr Plant Biol; 2009 Aug; 51(8):751-61. PubMed ID: 19686372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23.
    Sánchez-Barrena MJ; Chaves-Sanjuan A; Raddatz N; Mendoza I; Cortés Á; Gago F; González-Rubio JM; Benavente JL; Quintero FJ; Pardo JM; Albert A
    Plant Physiol; 2020 Apr; 182(4):2143-2153. PubMed ID: 32015077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores.
    Batistic O; Waadt R; Steinhorst L; Held K; Kudla J
    Plant J; 2010 Jan; 61(2):211-22. PubMed ID: 19832944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis.
    Ligaba-Osena A; Fei Z; Liu J; Xu Y; Shaff J; Lee SC; Luan S; Kudla J; Kochian L; Piñeros M
    New Phytol; 2017 Apr; 214(2):830-841. PubMed ID: 28150888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.