These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30400356)
1. Preparation of Functional Monomers as Precursors of Bioprobes from a Common Styrene Derivative and Polymer Synthesis. Hayama R; Koyama T; Matsushita T; Hatano K; Matsuoka K Molecules; 2018 Nov; 23(11):. PubMed ID: 30400356 [TBL] [Abstract][Full Text] [Related]
2. Use of chloromethylstyrene as a supporter for convenient preparation of carbohydrate monomer and glycopolymers. Matsuoka K; Kurita A; Koyama T; Hatano K Carbohydr Polym; 2014 Jul; 107():209-13. PubMed ID: 24702937 [TBL] [Abstract][Full Text] [Related]
3. Fluorogenic glycopolymers available for determining the affinity of lectins by intermolecular FRET. Matsuoka K; Suzuki Y; Koyama T; Matsushita T; Hatano K Bioorg Med Chem Lett; 2020 Apr; 30(8):127024. PubMed ID: 32098722 [TBL] [Abstract][Full Text] [Related]
4. Synthetic assembly of α-O-linked-type GlcNAc using polymer chemistry affords sugar clusters, which effectively bind to lectins. Nakada J; Matsushita T; Koyama T; Hatano K; Matsuoka K Bioorg Med Chem Lett; 2024 Feb; 99():129616. PubMed ID: 38216097 [TBL] [Abstract][Full Text] [Related]
5. Preparation of Matsushita T; Nozaki M; Sunaga M; Koyama T; Hatano K; Matsuoka K ACS Omega; 2023 Oct; 8(40):37329-37340. PubMed ID: 37841120 [TBL] [Abstract][Full Text] [Related]
6. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Jono K; Nagao M; Oh T; Sonoda S; Hoshino Y; Miura Y Chem Commun (Camb); 2017 Dec; 54(1):82-85. PubMed ID: 29211064 [TBL] [Abstract][Full Text] [Related]
7. Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Xie M; Hu J; Long YM; Zhang ZL; Xie HY; Pang DW Biosens Bioelectron; 2009 Jan; 24(5):1311-7. PubMed ID: 18790631 [TBL] [Abstract][Full Text] [Related]
8. Controlled Growth of Ultra-Thick Polymer Brushes via Surface-Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators. Zeng Y; Xie L; Chi F; Liu D; Wu H; Pan N; Sun G Macromol Rapid Commun; 2019 Jul; 40(13):e1900078. PubMed ID: 30969012 [TBL] [Abstract][Full Text] [Related]
9. Synthetic construction of sugar-amino acid hybrid polymers involving globotriaose or lactose and evaluation of their biological activities against Shiga toxins produced by Escherichia coli O157:H7. Matsuoka K; Nishikawa K; Goshu Y; Koyama T; Hatano K; Matsushita T; Watanabe-Takahashi M; Natori Y; Terunuma D Bioorg Med Chem; 2018 Dec; 26(22):5792-5803. PubMed ID: 30420327 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence-labeled synthetic glycopolymers: a new type of sugar ligands of lectins. Nagata K; Furuike T; Nishimura S J Biochem; 1995 Aug; 118(2):278-84. PubMed ID: 8543559 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular glycorhodamine-polymer dot ensembles for the homogeneous, fluorogenic analysis of lectins. Wang CZ; He XP Carbohydr Res; 2018 Jan; 455():1-4. PubMed ID: 29127846 [TBL] [Abstract][Full Text] [Related]
12. Synthetic assembly of a series of glycopolymers having sialyl α2-3 lactose moieties connected with longer spacer arms. Adachi R; Matsushita T; Koyama T; Hatano K; Matsuoka K Bioorg Med Chem; 2023 Mar; 81():117209. PubMed ID: 36787684 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of artificial N-glycopolypeptides carrying N-acetyllactosamine and related compounds and their specific interactions with lectins. Zeng X; Murata T; Kawagishi H; Usui T; Kobayashi K Biosci Biotechnol Biochem; 1998 Jun; 62(6):1171-8. PubMed ID: 9692202 [TBL] [Abstract][Full Text] [Related]
20. Analysis of specific interactions of synthetic glycopolypeptides carrying N-acetyllactosamine and related compounds with lectins. Zeng X; Murata T; Kawagishi H; Usui T; Kobayashi K Carbohydr Res; 1998 Nov; 312(4):209-17. PubMed ID: 9861697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]