BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 30400365)

  • 1. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope.
    Mollaeian K; Liu Y; Bi S; Wang Y; Ren J; Lu M
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of F-actin and Microtubules on Cellular Mechanical Behavior Studied Using Atomic Force Microscope and an Image Recognition-Based Cytoskeleton Quantification Approach.
    Liu Y; Mollaeian K; Shamim MH; Ren J
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating cancer cell mechanics and actin cytoskeleton structure by chemical and mechanical stimulations.
    Azadi S; Tafazzoli-Shadpour M; Soleimani M; Warkiani ME
    J Biomed Mater Res A; 2019 Aug; 107(8):1569-1581. PubMed ID: 30884131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials.
    Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A
    J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.
    Fusco S; Panzetta V; Embrione V; Netti PA
    Acta Biomater; 2015 Sep; 23():63-71. PubMed ID: 26004223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Endothelial Cell Adherence and Elastic Modulus by Substrate Stiffness.
    Jalali S; Tafazzoli-Shadpour M; Haghighipour N; Omidvar R; Safshekan F
    Cell Commun Adhes; 2015; 22(2-6):79-89. PubMed ID: 27960555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton.
    Brückner BR; Nöding H; Skamrahl M; Janshoff A
    Prog Biophys Mol Biol; 2019 Jul; 144():77-90. PubMed ID: 30197289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate substrate stiffness induces vascular smooth muscle cell differentiation through cellular morphological and tensional changes.
    Nagayama K; Nishimiya K
    Biomed Mater Eng; 2020; 31(3):157-167. PubMed ID: 32568168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity mapping of pore-suspending native cell membranes.
    Lorenz B; Mey I; Steltenkamp S; Fine T; Rommel C; Müller MM; Maiwald A; Wegener J; Steinem C; Janshoff A
    Small; 2009 Apr; 5(7):832-8. PubMed ID: 19242949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse tissue mechanics of cell monolayer expansion.
    Kondo Y; Aoki K; Ishii S
    PLoS Comput Biol; 2018 Mar; 14(3):e1006029. PubMed ID: 29494578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin kinetics shapes cortical network structure and mechanics.
    Fritzsche M; Erlenkämper C; Moeendarbary E; Charras G; Kruse K
    Sci Adv; 2016 Apr; 2(4):e1501337. PubMed ID: 27152338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells.
    Titushkin I; Cho M
    Biophys J; 2007 Nov; 93(10):3693-702. PubMed ID: 17675345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of substrate stiffness on the mechanical properties of cervical cancer cells.
    Zhuang Y; Huang Y; He Z; Liu T; Yu X; Xin SX
    Arch Biochem Biophys; 2022 Aug; 725():109281. PubMed ID: 35537506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.
    Chou SY; Cheng CM; LeDuc PR
    Biomaterials; 2009 Jun; 30(18):3136-42. PubMed ID: 19299009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
    Rianna C; Ventre M; Cavalli S; Radmacher M; Netti PA
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21503-10. PubMed ID: 26372777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate stiffness orchestrates epithelial cellular heterogeneity with controlled proliferative pattern via E-cadherin/β-catenin mechanotransduction.
    Wang B; Qin P; Zhao H; Xia T; Wang J; Liu L; Zhu L; Xu J; Huang C; Shi Y; Du Y
    Acta Biomater; 2016 Sep; 41():169-80. PubMed ID: 27208640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.