BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30400400)

  • 1. Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production.
    Bottaro E; Mosayyebi A; Carugo D; Nastruzzi C
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic mixing and the formation of nanoscale lipid vesicles.
    Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M
    ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip microfluidic production of cell-sized liposomes.
    Deshpande S; Dekker C
    Nat Protoc; 2018 May; 13(5):856-874. PubMed ID: 29599442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposome production by microfluidics: potential and limiting factors.
    Carugo D; Bottaro E; Owen J; Stride E; Nastruzzi C
    Sci Rep; 2016 May; 6():25876. PubMed ID: 27194474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach.
    Zizzari A; Bianco M; Carbone L; Perrone E; Amato F; Maruccio G; Rendina F; Arima V
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29232873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic methods for production of liposomes.
    Yu B; Lee RJ; Lee LJ
    Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes.
    Han JY; La Fiandra JN; DeVoe DL
    Nat Commun; 2022 Nov; 13(1):6997. PubMed ID: 36384946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise control of liposome size using characteristic time depends on solvent type and membrane properties.
    Choi S; Kang B; Yang E; Kim K; Kwak MK; Chang PS; Jung HS
    Sci Rep; 2023 Mar; 13(1):4728. PubMed ID: 36959258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing.
    Lin WS; Malmstadt N
    Eur Biophys J; 2019 Sep; 48(6):549-558. PubMed ID: 31327019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug.
    Kastner E; Verma V; Lowry D; Perrie Y
    Int J Pharm; 2015 May; 485(1-2):122-30. PubMed ID: 25725309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dialysis-functionalized microfluidic platform for in situ formation of purified liposomes.
    Shan H; Sun Q; Xie Y; Liu X; Chen X; Zhao S; Chen Z
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113829. PubMed ID: 38430829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation.
    Kotouček J; Hubatka F; Mašek J; Kulich P; Velínská K; Bezděková J; Fojtíková M; Bartheldyová E; Tomečková A; Stráská J; Hrebík D; Macaulay S; Kratochvílová I; Raška M; Turánek J
    Sci Rep; 2020 Mar; 10(1):5595. PubMed ID: 32221374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Submicron CaCO
    Reznik I; Kolesova E; Pestereva A; Baranov K; Osin Y; Bogdanov K; Swart J; Moshkalev S; Orlova A
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.