These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30400400)

  • 21. Microfluidic-assisted bacteriophage encapsulation into liposomes.
    Leung SSY; Morales S; Britton W; Kutter E; Chan HK
    Int J Pharm; 2018 Jul; 545(1-2):176-182. PubMed ID: 29729404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasound-enhanced microfluidic synthesis of liposomes.
    Huang X; Caddell R; Yu B; Xu S; Theobald B; Lee LJ; Lee RJ
    Anticancer Res; 2010 Feb; 30(2):463-6. PubMed ID: 20332455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing.
    Lo CT; Jahn A; Locascio LE; Vreeland WN
    Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application.
    Carvalho BG; Ceccato BT; Michelon M; Han SW; de la Torre LG
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.
    Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA
    J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions.
    Yanar F; Mosayyebi A; Nastruzzi C; Carugo D; Zhang X
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33105650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities.
    Hoffman JR; Tasciotti E; Molinaro R
    Methods Mol Biol; 2018; 1792():205-214. PubMed ID: 29797262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents.
    Zhigaltsev IV; Tam YK; Leung AK; Cullis PR
    J Liposome Res; 2016; 26(2):96-102. PubMed ID: 25856305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing.
    Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR
    Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.
    Dalmoro A; Bochicchio S; Nasibullin SF; Bertoncin P; Lamberti G; Barba AA; Moustafine RI
    Eur J Pharm Sci; 2018 Aug; 121():16-28. PubMed ID: 29777855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printing of Microfluidic-assisted Liposomes Production for Drug Delivery and Nanobiomedicine: A Review.
    Mohammad-Jafari K; Naghib SM
    Curr Med Chem; 2024 Jan; ():. PubMed ID: 38299296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.
    Kastner E; Kaur R; Lowry D; Moghaddam B; Wilkinson A; Perrie Y
    Int J Pharm; 2014 Dec; 477(1-2):361-8. PubMed ID: 25455778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation.
    Jahn A; Lucas F; Wepf RA; Dittrich PS
    Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems.
    Mijajlovic M; Wright D; Zivkovic V; Bi JX; Biggs MJ
    Colloids Surf B Biointerfaces; 2013 Apr; 104():276-81. PubMed ID: 23334181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics.
    Webb C; Khadke S; Schmidt ST; Roces CB; Forbes N; Berrie G; Perrie Y
    Pharmaceutics; 2019 Dec; 11(12):. PubMed ID: 31817217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.