These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30400416)

  • 21. Mechanical Vibration Measurement of Solidly Mounted Resonator in Fluid by Atomic Force Microscopy.
    Xu F; Guo X; Xu L; Duan X; Zhang H; Pang W; Fu X
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic corrections to contact resonance atomic force microscopy measurements of viscoelastic loss tangent.
    Tung RC; Killgore JP; Hurley DC
    Rev Sci Instrum; 2013 Jul; 84(7):073703. PubMed ID: 23902072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of the AFM Sensor by a Precisely Regulated Air Stream to Increase Imaging Speed and Accuracy in the Contact Mode.
    Dzedzickis A; Bucinskas V; Viržonis D; Sesok N; Ulcinas A; Iljin I; Sutinys E; Petkevicius S; Gargasas J; Morkvenaite-Vilkonciene I
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography.
    Vasić B; Kratzer M; Matković A; Nevosad A; Ralević U; Jovanović D; Ganser C; Teichert C; Gajić R
    Nanotechnology; 2013 Jan; 24(1):015303. PubMed ID: 23220750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment.
    Korayem AH; Imani F; Korayem MH
    Microsc Res Tech; 2019 Oct; 82(10):1787-1801. PubMed ID: 31329310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation Study of Inertial Micro-Switch as Influenced by Squeeze-Film Damping and Applied Acceleration Load.
    Peng Y; Wen Z; Li D; Shang Z
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new model for investigating the flexural vibration of an atomic force microscope cantilever.
    Abbasi M; Karami Mohammadi A
    Ultramicroscopy; 2010 Oct; 110(11):1374-9. PubMed ID: 20702041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constant tip-surface distance with atomic force microscopy via quality factor feedback.
    Fan L; Potter D; Sulchek T
    Rev Sci Instrum; 2012 Feb; 83(2):023706. PubMed ID: 22380098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.
    Nahavandi A; Korayem MH
    Microsc Microanal; 2015 Oct; 21(5):1195-206. PubMed ID: 26324257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing the damping properties of materials for high-speed atomic force microscopy.
    Adams JD; Erickson BW; Grossenbacher J; Brugger J; Nievergelt A; Fantner GE
    Nat Nanotechnol; 2016 Feb; 11(2):147-51. PubMed ID: 26595334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
    Legleiter J
    Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accuracy of the spring constant of atomic force microscopy cantilevers by finite element method.
    Chen BY; Yeh MK; Tai NH
    Anal Chem; 2007 Feb; 79(4):1333-8. PubMed ID: 17297931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of cantilevers' dimensions on phase contrast in multifrequency atomic force microscopy.
    Ehsanipour M; Damircheli M; Eslami B
    Microsc Res Tech; 2019 Sep; 82(9):1438-1447. PubMed ID: 31106947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air.
    Solares SD; An S; Long CJ
    Beilstein J Nanotechnol; 2014; 5():1637-48. PubMed ID: 25383276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: a kinetostatic method.
    Tseytlin YM
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):025102. PubMed ID: 18315324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of a complete squeeze-film damping model for MEMS devices.
    Lu Q; Fang W; Wang C; Bai J; Yao Y; Chen J; Xu X; Huang W
    Microsyst Nanoeng; 2021; 7():54. PubMed ID: 34567767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography.
    He Y; Geng Y; Yan Y; Luo X
    Nanoscale Res Lett; 2017 Sep; 12(1):544. PubMed ID: 28940164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.
    Loganathan M; Bristow DA
    Rev Sci Instrum; 2014 Apr; 85(4):043703. PubMed ID: 24784614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Damped Cantilever Microprobes for High-Speed Contact Metrology with 3D Surface Topography.
    Fahrbach M; Xu M; Nyang'au WO; Domanov O; Schwalb CH; Li Z; Kuhlmann C; Brand U; Peiner E
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.