BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30400477)

  • 1. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique.
    Carugo D; Lee JY; Pora A; Browning RJ; Capretto L; Nastruzzi C; Stride E
    Biomed Microdevices; 2016 Feb; 18(1):4. PubMed ID: 26747434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Optimum Cutting Parameters of an Aluminum Mold for Effective Bonding Strength of a PDMS Microfluidic Device.
    Yousuff CM; Danish M; Ho ETW; Kamal Basha IH; Hamid NHB
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication.
    Tsao CW; Wu ZK
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33147807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates.
    Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling.
    Liu Z; Qin S; Chen X; Chen D; Wang F
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production.
    Behroodi E; Latifi H; Bagheri Z; Ermis E; Roshani S; Salehi Moghaddam M
    Sci Rep; 2020 Dec; 10(1):22171. PubMed ID: 33335148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Perforated PDMS Microchannel by Successive Laser Pyrolysis.
    Min K; Lim J; Lim JH; Hwang E; Kim Y; Lee H; Lee H; Hong S
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.
    Sugiura Y; Hirama H; Torii T
    Sci Rep; 2015 Aug; 5():13375. PubMed ID: 26300303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of an Open Microfluidic Device for Immunoblotting.
    Abdel-Sayed P; Yamauchi KA; Gerver RE; Herr AE
    Anal Chem; 2017 Sep; 89(18):9643-9648. PubMed ID: 28825964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology.
    Javidanbardan A; Azevedo AM; Chu V; Conde JP
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.