These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30400478)

  • 1. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant.
    Chae SH; Ju S; Choi Y; Chi YE; Ji CH
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A composite energy harvester based on human reciprocating motion.
    Gu X; He L; Wang H; Sun L; Zhou Z; Cheng G
    Rev Sci Instrum; 2023 Mar; 94(3):035004. PubMed ID: 37012818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.
    Leung CM; Wang Y; Chen W
    Rev Sci Instrum; 2016 Nov; 87(11):114705. PubMed ID: 27910368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid-Flex PCB Technology with Embedded Fluidic Cavities and Its Application in Electromagnetic Energy Harvesters.
    Chiu Y; Hong HC
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor.
    Beato-López JJ; Royo-Silvestre I; Algueta-Miguel JM; Gómez-Polo C
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester.
    Wang N; Han R; Chen C; Gu J; Li X
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes.
    Yoon BR; Park JH; Lee SK
    J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Optimization and Comparison of Cylindrical Electromagnetic Vibration Energy Harvesters.
    Phan TN; Aranda JJ; Oelmann B; Bader S
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: A cubic electromagnetic harvester that convert vibration energy from all directions.
    Han M; Qiu G; Liu W; Meng B; Zhang XS; Zhang H
    Rev Sci Instrum; 2014 Jul; 85(7):076109. PubMed ID: 25085194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Magnetically Coupled Electromagnetic Energy Harvester with Low Operating Frequency for Human Body Kinetic Energy.
    Li X; Meng J; Yang C; Zhang H; Zhang L; Song R
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.